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NOTATION

ROMAN

I. Italicised Lower Case

a constant

b constant

d diameter

f frequency

g scalar mass flux

k turbulence kinetic energy

1 length

m index limit

q contact heat flux scalar

r radius

t time

v velocity scalar

x displacement scalar or variable

y variable

2. Italicised Upper Case

A area

C heat capacity

E external and mutual energy

G total flux

H enthalpy

K constant

M mass

N non-dimensional parameter

p pressure

R gas constant

T temperature

U internal energy

V volume
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3. Bold Lower Case

f

g

n

q

S

V

X

external and mutual force

mass flux density

unit outward normal

contact heat flux

contact force

velocity

displacement

4. Bold Upper Case

D

I

T

deformation tensor

identity matrix

extra stress tensor

5. Computer Programme Variables

NHL

NKF

NRF

NRL

index of last heater mass/energy discrete volume

index of first cooler mass/energy discrete volume

index of first regenerator mass/energy discrete volume

index of last regenerator mass/energy discrete volume

GREEK

i, Upper Case

A bulk compressibility

dissipation

2. Lower Case

(%

6

constant

constant

unit vector component

turbulence kinetic energy dissipation rate

|v



V

P

T

dynamic viscosity

kinematic viscosity

density

extra shear stress tensor component

generalised scalar, vector, or tensor quantity

specific dissipation rate

HEBREW

transformation tensor

OPERATORS

d

ddt

D

f()

a()

8

LX

V

f
N

[v]_

I,I

I"1

U

C

total derivative

total derivative with respect to time

substantive derivative

function of

quantisation function

partial derivative

incremental change

divergence

integral

summation

time average of #

volume average of

time average of volume average of

time average of time average of

absolute value or magnitude of

scalar product of vectors, vector product of vector and

tensor

scalar product of tensors

intersection

union

proper subset



SUBSCRIPTS
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nr
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Pe

Pr

r

Re

(s)
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Va

x

At

acoustic

characteristic

index

index

index

index

index limit in two-dimensional space

material body

momentum discrete volume

index limit in two-dimensional space

momentum discrete volume, left hand

radial momentum discrete volume

momentum discrete volume, right hand

axial momentum discrete volume

at constant pressure

Peclet

Prandtl

regenerator

Reynolds

system of particles

at constant temperature

Valensi

axial

time increment
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T

s

#

^

turbulent

transpose

previous time step

distinguishing indicator

fluctuating component

per unit mass

time rate of change
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CHAPTER i

INTRODUCTION

The activities described in this report do not constitute a continuum

but rather a series of linked smaller investigations in the general area of

one- and two-dimensional Stirling machine simulation. The initial impetus for

these investigations was the development and construction of the Mechanical

Engineering Test Rig (METR) under a grant awarded by NASA to Dr Terry Simon at

the Department of Mechanical Engineering, University of Minnesota. The

purpose of the METR is to provide experimental data on oscillating turbulent

flows in Stirling machine working fluid flow path components (heater, cooler,

regenerator, etc.) with particular emphasis on laminar/turbulent flow

transitions.

Hence, the initial goals for the grant awarded by NASA were, broadly,

to provide computer simulation backup for the design of the METR and to

analyze the results produced. This was envisaged in two phases: first, to

apply an existing one-dimensional Stirling machine simulation code to the METR

and second, to adapt a two-dimensional fluid mechanics code which had been

developed for simulating high Rayleigh number buoyant cavity flows to the

METR. The key aspect of this latter component was the development of an

appropriate turbulence model suitable for generalised application to Stirling

simulation. A final step was then to apply the two-dimensional code to an

existing Stirling machine for which adequate experimental data exist.

The work described herein was carried out over a period of three years

on a part-time basis. Forty percent of the first year's funding was provided

as a match to the NASA funds by the Underground Space Center, University of

Minnesota, which also made its computing facilities available to the project

at no charge.

i.i OBJECTIVES

With the advantage of a posteriori clarity, the following overall

objectives guided the course of the work:

i. Apply an existing one-dimensional simulation code to the METR.

. Adapt and apply an existing two-dimensional fluid mechanics code

to the METR.

. Use the METR experimental results to guide the development of a

turbulence model appropriate for generalised application to

Stirling machine simulation.



. Validate the two-dimensional simulation including its turbulence

model against experimental data for an existing Stirling engine.

1.2 PROJECT EVOLUTION

The basic simulation codes applied to the METR are the fully implicit,

discrete volume simulations developed during the course of the author's PhD

research program (Go87). The application of the one-dimensional version of

the code to the METR was elementary and provided some design guidance to Simon

and Seume (the graduate student conducting the METR research) in developing

the final design of the rig.

Because a significant delay prior to the commissioning of the rig was

expected, it was decided to proceed with applying the one- and two-dimensional

simulations to a Stirling engine, the latter simulation initially without the

inclusion of a turbulence model. NASA chose the Space Power Demonstrator

Engine (SPDE) as the target engine. This back-to-back, free-piston design is

characterised by an operating frequency of i00 Hz and a mean pressurisation of

150 bars which, combined with a relatively short working fluid flow path,

yield an engine characteristic number (Nch) (see section 2.6) of about 25.

This means that there are roughly 25 complete information propagation

traverses between the expansion and compression space pistons during each

cycle. This may be compared with a typical characteristic number of 96 for

the GM-GPU3 kinematic engine. In the case of the GM-GPU3 engine, the

characteristic number proved to be large enough so that modelling of

information propagation effects did not prove necessary in order to match the

experimental data (Go87). However, in the case of the SPDE, such modelling of

information propagation did enable agreement between the measured and

simulated piston indicated works to be obtained.

This elicited some controversy not only within NASA but also among

other Stirling engine analysts who expressed doubt whether information

propagation effects are physically relevant at low Mach numbers. Hence, a

significant deviation of the grant was initiated into an investigation of the

information propagation phenomenon in the context of a physical application

remote from Stirling engines. While not settling the controversy, this

investigation did reveal the limitations of the simulation code by

establishing a lower characteristic number limit below which the code was

judged inapplicable.

Within these limits, the two-dimensional fluid dynamics code was

modified and successfully applied to the SPDE. The methodology adopted was to

treat the heater as a two-dimenslonal entity represented by a single "typical"

tube in an otherwise one-dimensional system. This was intended to facilitate

the application of the METR turbulence data to an actual engine (via the

simulation code) since the rig would be configured to represent just such an

SPDE heater tube. A significant aspect of this application was the

development of a mesh generation scheme enabling a "seamless" junction between

the one-dimensional rectilinear and two-dimensional cylindrical spatial

discretisations.



At this stage, the METRstill did not yield quantitative data suitable
for turbulence model development. Nevertheless, the two-dlmenslonal SPDEcode
was ported to the METRgeometry, albeit without the inclusion of a turbulence
model. Somemeanvelocity qualification comparisons were madebetween the
simulated and preliminary experimental data. These comparisons revealed

systematic errors in the experimental data. The errors included flow

anomalies (apparently caused by piston/cylinder "sticking"), the absence of

ambient boundary conditions and hot-wire anemometer calibration uncertainties.

Qualitatively useful data did however become available when Joerge Seume

published his PhD thesis (Se88). Hence, since the grant period was drawing to

a close, development of the turbulence model was initiated without the benefit

of an experimental benchmark. Finally, a single half-cycle of quantitatively

useful turbulence data (despite the continued existence of systematic errors)

for the SPDE heater tube configuration was eventually delivered about three

weeks prior to the termination of the grant. This allowed barely enough time

to make some preliminary turbulence model evaluations and to define the

critical issues in oscillating flow turbulence modelling. The larger

objective of applying the turbulence model to the SPDE could not be fulfilled.

The structure of this report thus reflects the modus operandi of the

grant itself, comprising a compendium of sectional reports delivered to NASA

at the termination of each phase. Chapter 2 summarizes the simulation model

and its theoretical foundations; chapter 3 discusses the simulation of the

SPDE; chapter 4 describes an investigation of the information propagation

issue based upon an analytic description of a transmission line; and chapter 5

is devoted to the simulation of the METR and the development of a turbulence

model. Salient conclusions and some directions for future research arising

therefrom are presented chapter 6.



CHAPTER 2

THE SIMULATION MODEL

2. I INTRODUCTION

This chapter presents a narrative overview of the physics and numerics

of the simulation model. Included is the postulational basis from which the

conservation equations are derived as well as the definitions of the

discretisation, turbulence and information propagation models. Since the

symbolic development of the simulation model is voluminous, the reader is

directed toward reference Go87 for a complete and rigorous derivation of all

the equations presented.

The philosophical basis upon which the simulation model rests is

described by Tisza (Ti66) as the 'postulational' approach in his discussion of

the evolution of the concepts of thermodynamics. In summarizing the efficacy

of the postulational approach, Tisza makes the following critical observation:

'First, and most important, we claim no absolute validity for our

postulational basis. The validity of the postulates and the usefulness

of the primitive concepts are only tentative and have to be justified

by the experimental verification of the implications of the theory.'

Thus the postulational approach used to develop a symbolic description

of the fluid dynamics of Stirling cycle machines ultimately can be justified

only by the extent to which the results produced can be given validity by

experimental observation.

2.2 THE INTEGRAL CONSERVATION BALANCES

The integral conservation balances forming the backbone of the

simulation codes are derived from four postulates. The first postulate is

based on the classical concept that matter is uniformly distributed through

space. Even though this postulate is known to be unrealistic in terms of the

quantised, discontinuous nature of matter, its usefulness lies in the

simplicity with which macroscopic phenomena may be described. The following

statement of the first postulate is adopted:

Postulate I Matter is continuous and distributed uniformly within an

arbitrary bounded space.

This statement is more restrictive than those usually offered (S181,

ZH76) since the uniform and continuous distribution of matter is postulated

only within a space delineated by boundaries which is defined herein as a

discrete volume. Thus a discrete volume admits the existence of

discontinuities at its boundaries. This means that physical phenomena such as



shock waves and numerical phenomenasuch as volume-averaged property
discontinuities are accommodatedwithin the piecewise continuum model
postulated.

Having thus defined - discrete volume, the essential requirement is to

describe the temporal variat of intensive properties within the discrete

volume from macroscopically o_s_-vable conditions.

For a generalised scalar, ,ctor or tensor quantity _ defined by:

= _(x,t) (2.1)

the total temporal derivative of _ for a cohesive material body is given by:

JV<m_ JVcm_ JAcm_
(2.2)

Equation (2.2) indicates that the total change of _ for the entire

material body is a function of the change of _ at each fixed point within the

body plus the transport of _ at the boundaries of the body. This equation,

which is known as the 'transport theorem' (S181) places no restrictions on the

nature of the body other than it be regarded as an autonomous entity within a

given discrete volume V(m ) and that it have the characteristics of a

continuum. In particular, the degree of cohesiveness of the body is

arbitrary, so that generalisation to a system of particles of arbitrary

cohesiveness (that is, liquids, solids or gases) yields:

I  a Jat dv f
Vcs_ JV<s_ JAcs_

(2.3)

Equation (2.3) is known as the 'generalised transport theorem' (S181) and, in

essence, is the symbolic realisation of the first postulate.

The transport theorem of equation (2.2) provides the means by which

macroscopic conservation postulates may first be transformed into their

microscopic or differential counterparts that apply within the discrete

volume. Thereafter, the generalised transport theorem permits the

differential conservation balances to be applied to a system of particles such

as that comprising the working fluid of a Stirling cycle machine.

The conservation postulates are expressed strictly in terms of

macroscopic phenomena. Hence the macroscopic conservation of mass for an

arbitrary material body is expressed by the following postulate:

ORIGINAL PAGE Is
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Postulate II The mass of an autonomous material body is independent of

time.

Symbolically, this may be expressed as:

f
ddt [ pdV - 0

jv(_)
/

(2.4)

Choosing ¢ - p (that is, mass per unit volume or density is the

transport property) in equation (2.2) produces the differential conservation

balance:

ap/at - -(V.pv) (2.5)

in a Eulerian frame of reference.

The integral mass balance applicable to a discrete volume is obtained

from equations (2.5) and (2.3) and is given by:

dH(s)/dt - I A(s)p( (v'v(s))''n}dA
(2.6)

In this generalised or combined Eulerian/Lagrangian form, the rate of

change of mass of a system of particles is equal to the net advection of mass

across the boundaries of the system. The advection velocity is the relative

velocity between the particles and the boundary itself.

A statement of the macroscopic conservation of momentum for an

arbitrary material body expresses the third postulate, which is generally

referred to as Euler's first law (SI81):

Postulate III The time rate of change of the momentum of an autonomous

material body relative to the fixed stars is equal to the sum

of the forces acting on the body.

Postulate III may be expressed symbolically as:

f I IAddt pvdV - sdA + pfdV

Jr(m) A(m) V(m)

(2.7)

6



where s denotes the contact forces per unit area and f denotes the external

and mutual forces.

Selecting # - pv (the momentum per unit volume) in the transport

theorem (equation (2.2)), allows the following Eulerian differential momentum

conservation equation to be derived:

A

@(pv)/Ot + V.(pw) -- V.T - VP + pf (2.8)

It should be noted that the sign convention adopted for the extra shear stress

tensor T is such that T represents the stress acting at any point within a

material body. Modifying Stokes' hypothesis (Sc79) for gaseous fluids by

including a 'bulk viscosity' (BS60) allows T to be expressed by:

T - _{Vv + (Vv) T} + {(A-2_/3)(V.v)}l (2.9)

Together, equations (2.8) and (2.9) represent the Navier-Stokes equations,

which are usually independently derived on a more intuitive basis (Sc79,

BS60).

The generalised combined Eulerian/Lagrangian form of the integral

momentum conservation balance is obtained by substituting equation (2.8) into

equation (2.3) which produces:

[ [ rd([v]VPI¢s))/dt: = pv{ (v-Vcs)) o-n}dA - PndA - (T.-n)dA

Jacs_ Jacs_ Jacs_

+ pfdV

JVcs>

(2.10)

Thus the rate of change of momentum of a system of particles is equal

to the net advection of momentum across the boundaries of the system relative

to the system boundary velocity plus the contact, mutual, and external forces

acting on the system.

The fourth postulate is defined by the conservation of energy for a

material body. In the context of a discrete volume analysis, the first law of

thermodynamics which is adopted by most authors as their postulational basis

(Sc79, for example) is not specific enough for a macroscopic material body

(Go87). Thus the following formulation advocated by Slattery (S181) is

preferred:



Postulate IV The time rate of change of the internal and kinetic energy of

an autonomous material body relative to the fixed stars is

the sum of the rate at which forces acting on the body do

work on the body and the rate of energy transmission to the

body.

Symbolically, this may be expressed as:

f r r f rddt p(U+v2/2)dV = (v.s)dA + p(v.f)dV + qdA + pEdV

Vcm) JA(m_ JVcm_ (m_ JV(m,

(2li)

where s and f are defined for equation (2.7), q denotes the contact energy
^

transmission rate per unit area, and E denotes the external and mutual energy

transmission rate. The first and second terms on the right hand side

represent the work done by the corresponding force terms in equation (2.7)

Choosing the internal plus kinetic energy per unit volume as the

transport property by setting (_ = p(U+va/2) ) in the transport theorem

(equation (2.2)), the following Lagrangian differential energy equation may be

derived (Go87):

^ ^

pD(U+vZ/2)/Dt = p{(v-f)+E} + V.(T-v) V-(Pv) V.q (2.12)

This equation describes the differential conservation of thermal and

mechanical energy. It can be simplified by observing that the differential

conservation of mechanical energy may be determined separately using postulate

III. Forming the scalar product of the Lagrangian form of equation (2.8) with

v yields the differential conservation of mechanical energy equation in a

Lagrangian frame of reference:

^

pD(v2/2)/Dt = V.(T-v) - (T:Vv) - (v.VP) + p(v.f) (2.13)

The second term on the right-hand side is a tensor scalar product which

represents the irreversible conversion of mechanical energy into thermal

energy, or dissipation. Subtracting equation (2.13) from equation (2.12) and

expressing the result in Eulerian terms produces:

^ ^

a(pU)at + V.(pUv) = pE + (T:Vv) - P(V.v) V.q (2.14)

This equation defines the differential conservation of thermal energy. It may

be noted that equations (2.12) and (2.8) contain a redundancy that is absent

from equations (2.14) and (2.8). Although either set is admissible, and both



sets must ultimately yield identical results, the latter set is preferred
because of the computational simplicity and convenience it affords in
describing Stirling machine fluid dynamics.

Choosing the internal energy per unit volume as the transport property
in the generalized transport theorem (that is, _ = pU in equation (2.3)) and
substituting equation (2.14) produces the general Eulerian/Lagrangian integral
form:

d([vlUH(s))/dt = {pE + (T:Vv) + (v.VP)}dV + (Cl.-n)dA

JV<s_ JAcs_

rA I+ pH{(v-v(s)).-n}dA - P(v(s ).-n)dA

JA(s) A(s)

(2.15)

Thus the rate of change of internal energy of a system of particles is equal

to the sum of the following components, which in left to right sequence are:

the rate of mutual and external energy transmission to the system

the rate of irreversible conversion of mechanical into thermal

energy within the system boundaries

the isentropic heat generation rate within the system boundaries

the net rate of contact energy transmission across the boundaries

of the system

the net advection of enthalpy across the boundaries of the system

relative to the boundary velocity

the net rate at which mechanical work is done at the boundaries of

the system.

In order to implement the integral balances for gaseous fluids, an

equation of state is required. In keeping with the established practice for

Stirling machine analysis (Sc1871, Wa73), the ideal gas equation of state is

used here, namely:

PV = HKT (2.16)

Nevertheless, there are no intrinsic restrictions placed on the form of

the equation of state; other equations describing the behavior of real gases,

such as that of Redlich and Kwong (RK49), may be used. Owing to their

relative complexity, however, such equations are not as numerically convenient

as the ideal gas equation.

Equations (2.6), (2.10), (2.15), and (2.16) thus provide the analytic

basis in terms of a discrete volume continuum model for determining the

working fluid behavior of Stirling cycle machines.



2.3 THE TURBULENCE MODEL

The integral balances of equations (2.6), (2.10), and (2.15) are

strictly applicable in the limit as At _ 0 (Hi75). However, when the balances

are applied to systems in which At is finite, then the balances are precise

only for laminar flow conditions. Under turbulent flow conditions, the

transport properties _ may experience random fluctuations with periods less

than At, thus invalidating the instantaneous constancy of the temporal

gradients implied by the equations as described. The instantaneous value of

may be represented as the sum of a time-averaged component and a fluctuating

component:

- _ + 4' (2.17)

Attention here is focussed on obtaining the time-averaged quantities

directly since the computational effort necessary to obtain _ is currently

beyond the scope of practical Stirling machine simulation. The most general

approach to obtaining the time-averaged or turbulent transport balances is to

perform the averaging process on the integral balances directly (S181). This

admits fluctuating discrete volume geometries such as those occurring in

Lagrangian systems. Time-averaging equations (2.6), (2.10), and (2.15)

results in:

Mass:

f
d_s)/dt - | P{ (v-vcs))

JA(s)

(2.18)

Momentum:

[d(tvlvM(s))/dt = pv{ (v-Yes)) •-n}dA

JA(s)
I PndA - [ (T.-n)dA
A_s) JA_s)

^pfdV

JVc s )

(2.19)

lO



Energy :

d([vlUM(s))/dt - {pE+(T'Vv)+(v°VP)dV - (ct o-n)dA

JVcs) JA(s_

[A [+ pH{(v-v(s)).-n}dA - P(v(s)o-n)dA

JA(s) JA(s)

(2.20)

Equations (2.18) through (2.20) are by definition also applicable under

laminar flow conditions, since from equation (2.17) _ - _ when _' - O.

The principal difficulty in solving the time-averaged integral balances

is the unavailability of the fluctuating component of the transport

properties. In order to obtain the time-averaged properties directly, the

analytic approach adopted for dealing with the unknown fluctuating components

falls into the category of 'Reynolds averaged equations' (Fe83). In this

context, since the integral balances derived include both time- and volume-

averaging, Ferziger makes the following observation:

'... The equations describing the mean field contain averages of

products of fluctuating velocities and there are fewer equations than

unknowns the well-known closure problem. In fact, the set of

equations can never be closed by further averaging; a closure

assumption, or what is'the same thing, a turbulence model, has to be

introduced. The closure assumption must represent the unknown higher-

order average quantities in terms of lower-order quantities that are

computed explicitly.'

The minimum set of assumptions constituting the turbulence model

adopted here is stated in terms of the six restrictions discussed below.

These restrictions enable a time-averaged solution of the integral balances to

be obtained with reasonable computing resources. It must be emphasized,

however, that the turbulence model adopted is not definitive and is subject to

amendment by experimental data.

Restriction I

The turbulent flow is stationary such that:

Atturbulence characteristic << &tanalytic time increment

Restriction II

(2.21)

The turbulent flow field is spatially homogeneous such that:

]]



AVturbulence characteristic << AVdiscrete volume (2.22)

Rigorously, equations (2.21) and (2.22) are conflicting conditions for

any turbulent flow because if such a flow field is homogeneous, then it is

simultaneously a decaying flow field. However, if it is also stationary, then

the dissipation in the field can only be balanced by a non-homogeneity in

order to maintain the decaying characteristic. The following rationale

offered by Hinze (Hi75) is adopted here for proceeding with the stationary,

homogeneous flow field model:

'... Fortunately, the rate of decay of the mean properties is rather

slow with respect to the time scale of the smaller eddies. Therefore,

the actual state of non-statlonarity is considered not to be a serious

drawback in the experimental study of the smaller scale turbulence.

For the theoretical study, this makes it possible to apply the concepts

and theories of stationary random processes.'

Restriction III

The stationarlty of the turbulent flow field is sufficient for the

equality of the first and second order time averages, or equation

(2.21) implies that:

(2.23)

Hence by taking the time average of equation (2.17) it immediately follows

that:

_' - 0 (2.24)

Restriction IV

The ergodic hypothesis is valid for scalar turbulent fields.

The ergodic hypothesis states that for a stationary and homogeneous

turbulence:

[vl " - 7"- (2.25)

where #* represents a scalar or component of a vector. Hence from restriction

IV and equ_'-ions (2.23) through (2.25) it follows that:

--#

[Vl_bscatar - 0

Hence, in particular, for density and temperature:

(2.26)

]2



EvjP' " EvjT' - 0 (2.27)

Equations (2.27) constitute two of the explicit restrictions placed on

the simulation by the turbulence model, namely, that the temporal fluctuation

of the volume-averaged density and temperature are zero under the restrictions

of equations (2.21) and (2.22). Since the ergodic hypothesis is applied to

scalar properties only and equation (2.26) is limited to volume averages, non-

zero fluctuations of volume-averaged vector fields and correlations involving

non-volume-averaged scalar fields are permissible. This requires another

restriction, namely:

Restriction V

The effect on the mean flow resultant from vector turbulent fields may

be modelled.

In particular, the effect of the turbulent velocity field fluctuations on the

time-averaged flow field may be determined using a model such as an empirical

correlation (for example, that between friction factor and Reynolds number) or

a two-parameter turbulence model of the k-c variety.

The last restriction is defined by:

Restriction VI

The discrete volume boundaries do not experience temporal fluctuations.

This may be expressed symbolically as:

A'_s _ - 0 (2.28.1)

which in turn implies that:

V'(s ) - 0 and #.n - _.n (2.28.2)

Equations (2.28) do not place a restriction on the Lagrangian condition

v - v(s ) as suggested by equation (2.3). Under turbulent conditions, this is

achieved by setting V(s ) - v and admitting a turbulent flux as a function of

v - V(s ) (which is equal to v') across the Lagrangian boundary. In effect

this converts a turbulent Lagrangian boundary into a combined

Eulerian/Lagrangian boundary. In the context of Stirling machine numerical

analysis, restriction Vl enables generality to be maintained without the

necessity of allowing turbulent discrete volume boundary movement, enabling a

significant simplification of the subsequent analysis.
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At this stage, it is convenient to introduce the mass flux g into the

equations as a means of simplifying the numerical model, g is defined by:

g - pv (2.29)

Applying equation (2.29) and the six restrictions of the turbulence

model to the tlme-averaged conservation balances of equations (2.18) to (2.20)

yields (in combined Eulerlan/Lagranglan form):

Mass:

f
dM(s)/d_ - [_ { (g-pv(s)).-n}dA

JAcs)

(2.30)

Momentum:

d([tv]g V(s))/dt - I_A g| (v-V(s))'-n}dA " ;_ PndA
(s) (s)

[ [-- _ { ('T+T(t)).-n}dA + pfdV

JAcs_ JVcs_

(2.31)

Energy:

A [Cvd([tv]T M(s))/dt - {pE + (T:Vv) + (v-VP))dV + {(q+q(t)).-n}dA

JVcs_ JAcs)

- (_¢s_-n)dA + Cp (r(g-PVcs_)'-nldA
JAcs) cs)

(2.32)

Expressing the equation of state (equation (2.16)) in volume-averaged

terms and applying the turbulence model yields:

[tv)P- [tv]pR[tv]T (2.33)

The Reynolds stress tensor T (t) in equation (2.31) is given by:

TCt) = (g v - g Yes)) - (gv - gvcs)) (2.34)
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Analogously, the turbulent enthalpy flux vector q(t) in equation (2.32) is

defined by:

A

q(t) = Cp((g-T - pv(s)T) (g T - p-_(s)T)) (2.35)

Equations (2.34) and (2.35) cannot be solved since they contain

additional unknowns for which there are no additional equations (the closure

problem). Hence a turbulence model is required to solve these equations.

2.4 THE SPATIAL DISCRETISATION SCHEME

In his comprehensive review of computational fluid mechanics, Roache

(Ro82) describes a variety of spatial and temporal discretisation schemes for

the numerical application of the differential conservation balances which may

be loosely categorised into 'coincident' and 'staggered' mesh systems. These

mesh systems may be applied both spatially and temporally, thus yielding a

multiplicity of schemes involving coincident and staggered mesh systems.

In a coincident mesh scheme, the three differential transport

properties--density, velocity, and temperature--are evaluated at the same time

and/or at the same spatial location. However, in a spatially staggered mesh,

generally the density and temperature are computed at one set of grid points

while the velocities are computed at an offset grid point mesh. In a

temporally staggered mesh, the velocity is computed at a half time step offset

from the density and temperature. In recent years, a de facto consensus has

emerged that spatially staggered, temporally coincident discretisation schemes

are convenient and useful for fluid flow modelling (FEB3, PaS0). Roache

infers that the first use of a version of the spatially staggered mesh may be

attributed to Harlow and Fromm (HF64) although its apparent reinvention over

the intervening two decades is an attestation of its efficacy.

In the field of Stirling machine analysis, Urieli (Ur77) applied the

temporally coincident, spatially staggered grid to a simple generic machine

geometry. Schock, by contrast, used a temporally and spatially coincident

grid and invoked volumetrically weighted averages for computing flow rates

between grid points (Sc78). Both of these discretisation schemes involve the

application of the differential conservation balances in a one-dimensional

Eulerian frame of reference.

Although the spatial discretisation scheme used in the simulation model

contains elements employed by Urieli and Schock, it has its origins in the

mesh structure used in the 'Marker and Cell' (MAC) method of Harlow and Welch

(HW65). In particular, the general precepts of a temporally coincident,

spatially staggered numerical discretisation scheme suitable for the

application of the differential conservation balances are applied to the time-

averaged integral balances described in section 2.3. This application admits
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a three-dimenslonal space in a combined Eulerian/Lagrangian frame of

reference.

As the mass, momentum, and energy balances are fundamentally based upon

the concept of a discrete volume, the spatial discretisation scheme naturally

devolves to partitioning a given space into an assemblage of discrete volumes

with coincident boundaries. All the intensive parameters are thus expressed

in volume-averaged terms so that, by definition, the value of any intensive

parameter at a point within a discrete volume is extrinsic to the conservation

equations. Estimates of the intra-discrete volume intensive parameter

distribution may be made using 'volume functions' whose complexity is a

function of the boundary conditions imposed on the discrete volume.

The essence of the spatial discretisation scheme involves a method of

constructing the discrete volume grid so that, within any discrete volume,

scalar intensive parameters are assigned a position and vector intensive

parameters are assigned a plane, respectively. This introduces the concept of

a 'volumetric filtration' process which may be defined for a scalar field as

the assignation of a point to a discrete volume so that volume-averaged scalar

intensive parameter at that point satisfies the mean value theorem (TM72) for

the discrete volume. Similarly, for a vector field, volumetric filtration

assigns a plane to a discrete volume such that the value of a vector intensive

parameter over the plane (and perpendicular to it) normalised with respect to

the area of the plane satisfies the mean value theorem for the discrete

volume.

The characteristics of the discretisation scheme may be illustrated by

a two-dimensional Eulerian space using a triangular mesh as shown in figure

2.1. The mass and energy integral balances are applied to a common discrete

volume while the momentum balance is applied to discrete volumes which are

offset from the mass/energy discrete volume and straddle its boundaries. In

this arrangement, the momentum conservation balance is applied to the net

momentum, that is, to as many components as the dimensionality of the field

requires (two in this case). Typically, it is convenient to resolve the

momentum into components perpendicular and parallel to the plane generated by

the volumetric filter.

However, although generalised, this scheme is not necessarily the most

efficient numerically. Consider, for example, the Cartesian mesh shown in

figure 2.2 (the same observations apply to any regular mesh such as

cylindrical or spherical). In this case, the net momentum balance may be

split into its vector components so that each component balance is applied to

a unique offset discrete volume. As indicated by the double cross-hatched

area in figure 2.2, the net momentum can be calculated by the vector addition

of the momentum components determined individually for that volume. Thus this

particular case still yields the net momentum over the entire mass/energy

discrete volume as does the general scheme but requires half the computational

effort in two dimensions.

]6
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Generalising these concepts to a three-dimensional space with an

arbitrary coordinate system, the characteristics of the staggered discrete

volume grid may be expressed symbolically by denoting the mass/energy discrete

volume as V(s ) and any momentum discrete volume as Vn(s). Then considering any

adjacent mass/energy discrete volumes V(s)f and V(s)i+ I separated by a boundary

An(s)i+ I (where i represents an arbitrary sequence), the following attributes

may be defined for the discrete volume grid.

Attribute I

A momentum discrete volume straddles every mass/energy discrete volume

boundary An(s)i+ I and is bounded by a convex surface containing the

perimeter of the boundary An(s)i+ I and the volume centrolds of the

adjacent mass/energy discrete volumes. Symbolically this becomes:

[_(Vn(s)i+1) N {_(V(s)i) U _(V(s)i+1)}] C {_(V(s)i) u _(V(s)i+1)} (2.36)

Attribute II

The volume-averaged intensive parameters corresponding to a mass/energy

discrete volume are located at its volume centroid. Thus tv1_ is

located at [v]_ such that:

j[v_x- ( xdV) / V

V

(2.37)

Attribute III

The volume-averaged intensive parameters corresponding to a momentum

discrete volume are located on the boundary An(s)i+ I. Therefore [_]_ is

determined by:

Vn(s) J_V(s)i J#V(s)i+l

(2.38)

where a,_ < i satisfy equation (2.36).

]8



Attribute IV

The net momentum of any mass/energy discrete volume is uniquely defined

everywhere in the volume by the momenta of its boundary momentum

discrete volumes, or:

I gdV - Z I *gndVn(s)
V(s) V_(s)

(2.39.1)

where •

x _(Vncs_) - a(vcs _) (2.39.2)

Applying these attributes to the particular Cartesian mesh of figure

2.2 simplifies equation (2.36) to:

i-i(l(V¢s)i) n a(Vn¢s)i+i) ) - V¢s)i/2

V(s)i + V(s)i+l - Vncs)

(2.40.i)

(2.40.2)

which satisfies equations (2.37) and (2.39).

Equation (2.37) implies that in the case of the one-dimensional

Cartesian coordinate system which is most often used for Stirling machine

analysis, a mass/energy discrete volume centroid is defined by a plane

separating two adjacent discrete momentum volumes. In a two-dimensional,

Cartesian system the centrold becomes a line perpendicular to the mesh surface

while only in three dimensions does the centroid become a point.

The attributes of the spatial discretisation scheme enable all the non-

volume-averaged boundary terms in the time-averaged integral balances of

equations (2.30) through (2.32) to be replaced with volume-averaged terms, so

permitting the balances to be numerically discretised directly. The final

forms of the integral balances used in the simulation model are given in

combined Eulerian/Lagrangian form by:

Mass:

clM(s)/dt - I_n{ ([tv]g
(s)

ttvnlp Vncs_)'-n}dA (2.41)
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where the subscript n denotes that the relevant parameters are associated with

the momentum discrete volume.

Momentum:

I _ [tv]Pnd,A
[_

d([tVn]g Vn(s))/dr = A(s)[tv]g(([tv]V-V(s))'-n)dA JA(s)

_ ([v]T(t)''n) d_ " Mn(s)g
A(s)

I [ ([_tv1_CVt_vlV+ (VttvlV)T}
A(s)

+ _(t_vjX-2ttv_/3)(v. Etv_V)}I].-n ] d_
J

(2.42.1)

where T in equation (2.31) is replaced by the volume and time average of

equation (2.9) and the Reynolds stress tensor is given by the correlation:

iv]T(t) - "[v]g' IV]v' (2.42.2)

Energy:

----T

A

Cvd(ttv]T M(s))/dt - V(s){[tv]pE + [tv](T:Vv) + [vie (t)

+ ([tv]V'V[tv] P) } [tv]PdV(s)/dt

An(s)

(2.43.1)

^ [._ ....+ Gp [tvnlT {([tvn]g-[tvn]p Vn(s) ).-n}dA

oAn(s)
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where [v]$ (t) defines the turbulent dissipation tensor which is modelled and

the turbulent flux vector takes the form:

^

[Vn]_ = Cp([v]p [Vn]V' [vn]T- ..]p [Vn]V' [tvn]T) (2.43.2)

2.5 THE NUMERICAL SOLUTION ALGOR THM

An implicit (or advanced time) numerical algorithm is used to

temporally integrate the total time-differential conservation balances of

equations (2.41) through (2.43). The algorithm has its origins in the

Implicit Continuous-fluid Eulerian (ICE) technique of Harlow and Amsden (HA71)

and the Semi-Implicit Method for Pressure-Linked Equations, Revised (SIMPLER)
of Patankar (Pa80).

Central to the algorithm is the notion (HA71) that a change in the

pressure field is a function of the information propagation rate, or:

_ (SP/ap)Ta p (2.44)

where (8P/ap) T is the square of the isothermal speed of sound for a fluid with

constant specific heats. Substituting the equation of state (equation (2.33))

and discretising yields:

((tv]P V / R [tv]T - M") / At = dM(s)/dt (2.45)

after multiplying through by V/At. Equating with equation (2.41) produces:

r

[tv]P V/R [tv]T At = M"/A_ + [_ {([tvn]g - [tVn]P Vn(s))o.n}dA
JAn(s)

(2.46)

Equation (2.42.1) may be discretised and rearranged to produce:

fl m

[tVn]g = ([tVn]g Vn(s)) /Vn(s) At{ [_ [tv]_dA + f([tVn]g ' [tv]T, [tv]P)} / -Vn(s)

JA(s)
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u

Substituting into equation (2.46) for [tvn]g and rearranging:

(s) JA(s)

m

Hs/A_ + [(([tvn]g Vn(s)) a + Atf([tvn]g, [tVl T, [triP)} / Vn(s)

cs)

(2.47)

Equation (2.47) yields an advanced time or implicit pressure field

which is obtained by linking the pressure terms in the conservation of mass

and momentum balances, hence the 'pressure-llnked' terminology. However,

equation (2.47) can only be solved given the advanced time temperature and

density fields which in turn depend primarily on the advanced time mass flux

field. This dilemma is resolved by using an iterative solution scheme based

on an estimated or guessed mass flux field ItS]g* as used in the SIMPLER

algorithm.

The set of steps comprising the algorithm may be described broadly as

follows (see Go87 for specifics):

I.

2.

Guess the mass flux field [t_jg •

Explicitly compute the discrete volume masses from equation (2.41)

and then infer [trip from known values of V(s ).

3. Implicitly compute the temperature field using equations (2.43).

4. Implicitly compute the pressure field from equation (2.47).

. Implicitly compute the mass flux field from equations (2.42) using

the pressure field determined in step 4.

.

Compare [t_]g (computed) with ItS]g" (guessed) and return to step 2

with f([tv ]g,[tVn]g*) _ [tVn]g* if the mass flux field is

insufficiently converged.

As with all implicit schemes, this algorithm requires the repeated

numerical inversion of matrices. Hence the cost-effectiveness of the

algorithm for transient compressible fluid flow simulation is limited by the
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size of the matrices generated. This arises because a break-even point is

eventually reached when the cost of matrix inversion becomes equal to the cost

of using an explicit algorithm with time steps small enough to satisfy the

Courant criterion (CF67). However, for all the problems described in this

report, the algorithm is constrained to operate within the cost-effectiveness

break-even point by limiting the spatial discretisation (particularly in the

two-dimensional problems).

It should be noted that equations (2.45) and (2.47) are discretised

using a simple first order temporal difference. In general, this is not

necessary and other higher order temporal discretisation schemes may be used

(see section 4.7).

2.6 INFORMATION PROPAGATION MODELS

The viability of an implicit analysis for compressible fluid flows

depends on the extent to which the analysis properly accounts for information

propagation both on a cyclic equilibrium as well as on a transient basis. In

an explicit analysis, accurate information propagation modelling requires that

the Courant criterion (CF67) is met at each discrete volume. This imposes

limitations on the integration time increment for a given spatial

discretisation. The issue then is to find a similar criterion for selecting

the time increment in an implicit analysis. Consider equation (2.47) in the

following reduced form:

i+m

X Kj [tv]Pj - _i
j-i -m

(2.48)

where i denotes the individual mass/energy discrete volumes of which the flow

area is comprised, m is dependent on the dimensionality of the problem, and fj
and _i depend on At. On a transient basis for arbitrary At, equation (2.48)

can be applied to a series of pressure domains, one for each discrete

mass/energy volume as illustrated (for a particular two-dimensional Eulerian

field) in figure 2.3.

Each pressure domain has an extent _ f(v!_VaI)iAt determined by the

information propagation characteristics wh_re (Va) i is the sonic velocity

within each discrete mass/energy volume comprising a particular pressure

domain. Hence by this process of partitioning, a 'pressure domain splitting'

(PDS) algorithm may be structured to model information propagation phenomena.

This simplified explanation ignores the complexities arising from defining the

pressure domain boundaries under supersonic or sonic flow conditions (that is,

when Ivli _ (Va)i). However, it may be mentioned that under these conditions

the PDS algorithm essentially devolves to a standard approach such as the

'region-to-region' method (Jo69). Unfortunately, the PDS approach is

computationally quite expensive and hence may not be practical for Stirling

machine analysis.
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However, the principal focus of Stirling machine simulation is the

portrayal of cyclic equilibrium conditions rather than the details of a

specific transient cycle. This suggests a significant simplification by

applying equation (2.43) to the entire flow field (or treating the flow field

as a unitary pressure domain). Two approaches to obtaining the cyclic

equilibrium solution under these conditions may be hypothesized:

I. Infinite informarion propagation.

This hypothesis states that, at cyclic equilibrium, sufficient

time has passed such that every point in the flow field has received

information from every other point in the flow field for all instants

over the cyclic period. The hypothesis may be implemented by

arbitrarily selecting an integration time increment that is much less

than the smallest information propagation time characteristic of a

particular machine. The time characteristic may be defined as the

interval required for a pressure wave to exactly traverse the unitary

pressure domain once. Henceforward, the infinite information

propagation hypothesis is distinguished by referring to its

implementation as the 'equilibrium algorithm'.

2. Characteristically determined integration time increment.

Here the integration time increment is treated as a dependent

variable which is instantaneously equal to the machine time

characteristic. This yields the spatially limiting case of the PDS

algorithm and as such approximates the full information propagation

transient solution. The implementation of the characteristically

determined integration time increment hypothesis is termed the 'unitary

pressure domain' (UPD) algorithm.
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The characteristic number Nch is a convenient way of describing the

information propagation characteristics of a Stirling machine. Nch is defined

as the number of complete pressure traverses between the expansion and

compression space piston faces occurring over a cycle or:

Nch = i/f _[1 i / min{Ivi+(Va)il , Ivi-(Va)il}]
1

(2.49)

Hence the larger Nch , the more accurate the equilibrium algorithm is likely to

be in predicting cyclic equilibrium performance.

2.7 BOUNDARY ADVECTION

In the light of the attributes of the spatial discretisation scheme

and, in particular, the area normalisation requirement for the volume-averaged

momentum, the interpretation of the momentum advection term in equation

(2.42.1) is not self-evident. The usual approaches to boundary advection do

not translate directly into the discrete volume integral framework where

boundary discontinuities are admissible although not necessary. Several

approaches to dealing with boundary advection are possible. These include a

simple one-dimensional equilibrium approach, a multi-dimensional volume

function analysis and flux corrected transport methods such as those of Book,

Boris and Hain (BB75) and MacCormack (Mc82). In the simulation model

described in this report, the simple one-dimensional equilibrium approach has

been adopted as a baseline and modified by empirical models where necessary.

Physical insight to the form of the boundary advection of momentum may

be obtained by solving equation (2.42.1) under equilibrium conditions ignoring

mutual and external forces and turbulent momentum fluxes, that is:

[tVn]g([tVn]V'-n) d_ ([tvn]T'-n)dA = 0

(s) (s)

(2.5o)

Considering the pair of adjacent discrete momentum volumes shown in figure 2.4

in one dimension, equation (2.50) has the general solution (dropping the

averaging notation for clarity):

(E A) = {(EA)nR (EA)ni){exp(Npex/1) i} / (exp(Npe)-i } + (EA)nL (2.51.1)
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Figure 2.4 Adjacent one-dimenslonal momentum discrete volumes.

where Npe is the Peclet number at the centrold of the discrete mass/energy

volume of length 1 given by:

Npe - 3pvl/4_ (2.51.2)

Following Patankar (Pa80) and denoting the net boundary momentum flow

(advection plus diffusion) across boundary A in figure 2.4 as G, equations

(2.51) produce:

if Npe - 0 then:

e - (4_/3#I){(gA)nL-(&A)nR) (2.52.1)

if Npe _ 0 then:

G - v[(gA)nL+{(gA)nL-(gA)nR}{exp(Nve)-l}] (2.52.2)

These equations provide a physically meaningful methodology for

determining the boundary advected momentum flux. Consider a plot of G as a

function of Npe as shown in figure 2.5. Since Npe expresses the ratio between

the advection and diffusion of momentum across a discrete momentum volume

boundary, figure 2.5 shows that even at very low Npe the advectlon term

dominates. When Npe - 0 there is no advection while in the intermediate range
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the momentum flow is partly diffusive and partly advective. Furthermore, in

the limit:

As Npe _ _, C _ v(gA)n L

As Npe _ -_, G _ v(gA)n R

(2.53.1)

(2.53.2)

Thus figure 2.5 provides a model for determining the boundary advection

of momentum. In keeping with the transient nature of Stirling machine fluid

flow, the diffusion is kept as a discrete term in equation (2.42.1) and is not

lumped together with the advection term. Hence for a discrete momentum volume

boundary contained within a discrete mass/energy volume i, the advected mass

flux is defined in terms of the relative velocity v_ perpendicular to the

boundary where:

v* - ttv]v - V(s ) (2.54.1)

Hence:
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If v_ 0 then:

IZ ttvl_(v*.-n)d_ - (v*Etv3g Ancs_)i
Cs) i

(2.54.2)

If v_ < 0 then:

I_ [tv]g(v*,-n)dm "_ V_([tVn]_ An(s))i,l
(s) i

(2.54.3)

where i and i+l denote adjacent discrete momentum volumes.

Equations (2.54) intrinsically perform the area normalisation required

for equation (2.42.1) as mandated by the attributes of the discretisation

scheme. This occurs because the transport term is gA (or the mass flow rate)

which allows [tVn]g to be normalised by the appropriate flow area.

It may be noted that equations (2.54) represent a convoluted integral

version of the 'second upwind differencing' method proposed by Gentry, Martin,

and Daly (GM66). An analysis of this method shows that while it is

transportive (as with the classical or first upwind difference), it is also

second order accurate for the advection field (Ro82).

The boundary advection of enthalpy in equation (2.43.1) is determined

analogously to that described for the momentum equation with a similar end

result. Thus for a discrete mass/energy volume boundary contained within a

discrete momentum volume i, the advected enthalpy flux is defined in terms of

the relative boundary mass flux gi perpendicular to the boundary where:

g* = ([tVn]g - [tVn]P Vn(s)) (2.55.1)

Hence:

If g_ _ 0 then:

IA ttv_lT(g''n)d2 [ " (g* ttvlEms>)i ttv_Ti-1
n _.) i

(2.55.2)

If g_ < 0 then:
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_ EtvnJT(8"-n)dA - (g* [tvlT An(s>)i
An(s) i

(2.55.3)

where i-i and i denote adjacent discrete mass/energy volumes.

By nature of its simplicity, the approach adopted for modelling

transient advection does not resolve completely the 'false diffusion' problem

(Ro82) engendered by any upwind scheme. However, in terms of Stirling machine

simulation, this problem only becomes predominant for the enthalpy advection

in the regenerator. Thus in this case, an empirical model is used to overcome

the false diffusion deficiency of the advection scheme adopted (section 3.5).

More advanced advection modelling schemes based on volume functions have been

developed and indeed do yield better results, but in terms of Stirling machine

simulation, at least in one dimension, it is doubtful whether the improvement

in accuracy (which is small when the empirical model is correctly adjusted) is

worth the additional cost of computation.

2.8 CLOSURE

The foregoing discussion has described the manner in which the

fundamental postulates are transformed via a turbulence model and a

discretisation scheme into equations suitable for direct implementation in a

computer code. The derivation of the final equations places no restrictions

on the dimensionality of the implementation--the same equations are applicable

to one-, two- and three-dimensional problems. The information propagation

model and implicit numerical algorithm developed allow the equations to be

integrated temporally so that the influence of information propagation may be

bounded. This permits the impact of information propagation effects on the

performance of Stirling machines to be at least qualitatively investigated.
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CHAPTER 3

SIMULATION OF THE SPACE POWER

DEMONSTRATOR ENGINE

3. i INTRODUCTION

The primary objective in simulating the Space Power Demonstrator Engine

(SPDE) was to provide a test bed for validating the turbulence model developed

from the Mechanical Engineering Test Rig (METR) experimental results. The

SPDE was selected by NASA as the target engine because of its topical

relevance to their Stirling engine program and also because it is a more

complex device in terms of fluid dynamics than previous generations of free-

piston Stirling engines (such as the Sunpower REI000). This provides a more

severe test of the turbulence model and hence increases its potential

application envelope.

The simulation approach adopted has been to model the SPDE as a one-

dimensional system with the option of replacing the one-dimenslonal heater

module with a two-dlmensional module. The heater was chosen as the two-

dimensional replacement module since it was targeted for fluid dynamic

similarity with the METR. The purpose of performing a two-dimenslonal

simulation of the heater is to determine on a systems basis the effect of

using one-dimensional friction factor and heat transfer coefficient

correlations in a Stlrllng heat exchanger in comparison with a model that does

not require such first order empiricism. Nevertheless, the requirement for

second order empiricism, in particular the use of turbulence models, remains.

The development of such a model is described in chapter 5.

In view of the long lead times expected (and later realised) in

producing validation-quality METR experimental data upon which an oscillating

flow turbulence model could be based, prudence dictated, that the SPDE

simulation codes be developed first using standard friction factor and heat

transfer coefficient correlations for the one-dimensional components.

Furthermore, the initial two-dimensional heater module simulations would Mot

include any turbulence modelling, that is, the flow is assumed to be laminar.

This provides the necessary baseline against which the effect of a turbulence

model (as well as any improved one-dimensional correlations based thereon) may

be compared.

A comparison of one- and two-dimensional heater module simulations also

provides _ basis against which the efficacy of two-dimensional simulation of

Stirling machines can be judged, that is, whether the improved simulation

accuracy is worth the increased cost of computation. Such a judgement is not

obvious because it can be hazardous to isolate the effects of oscillating flow

in Stirling machine heat exchangers on the overall machine performance. This
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arises since the cyclic energy balance is the product of the synergistic

interaction of several factors including:

porous flow in the regenerator,

compressibility effects, particularly the influence of information

propagation, and

multl-dlmensional flow fields in the working space cylinders and

heat exchanger plena.

Hence it is possible that in a systems context, the advantages of single

component two-dlmenslonal simulation are nullified by the transport boundary

conditions imposed by the rest of the closed system. This is an important

consideration in attempting to apply any correlations experimentally derived

from the METR directly to Stlrllng hardware because of the boundary condition
dissimilarities.

Thus, the intention of the one- and two-dlmensional simulations of the

SPDE discussed hereafter is to provide an analytic foundation based on actual

hardware performance for later application of the METR experimental data. The

validity of this foundation is assessed by a comparison of the baseline one-

and two-dlmenslonal simulation predictions against the cyclic performance data

produced by the SPDE test program. Unfortunately, for the reasons noted in

chapter i, it did not prove possible to include the turbulence model developed

in chapter 5 into the SPDE two-dlmensional simulation, nor was it possible to

go one step further and develop one-dlmenslonal correlations from either the

simulated or analytic turbulence data.

3.2 SIMULATION HARDWARE

A schematic of the SPDE is shown in figure 3.1. The engine consists of

a pair of back-to-back, beta-conflguratlon, free-piston Stirling engines which

share a common expansion space. Work is extracted via linear alternators

attached to the pistons. As the component free-plston engines are

symmetrical, only half the SPDE need be simulated when using a one-dimensional

system model even with the inclusion of a two-dimenslonal heater module. The

SPDE has a design oscillating frequency of 105 Hz and a pressurization of 150
bars.

The expansion and compression spaces of the SPDE are quite complex in

comparison with those of typical Stlrling machines such as the Sunpower RE-

i000 (Sc83) and GM-GPU3 (Th79) engines. Part of this complexity stems from a

restriction of the maximum piston and displacer amplitudes to about 12.7 mm.

The resulting bore-to-stroke ratios predicate that the displacer and piston

function more as flat-plate oscillators than as conventional pistons. For

this reason, the flow in the expansion space / heater plenum (figure 3.1) is

strongly two-dlmensional with a significant radial gradient of axial velocity

at the heater entrance. The compression space also exhibits notable two-

dimensional momentum boundary conditions in addition to an unusual geometry,
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namely, two variable volume components joined by a conical annular passage.

Therefore, in the light of these complications and the importance of correctly

accounting for two-dlmensional momentum boundary conditions (Go87), a strictly

one-dimensional system model is not a satisfactory description of the SPDE.

From a fluid dynamics perspective, the balance of the SPDE is of fairly

conventional design. A tubular heater and cooler are separated by a square

mesh, woven screen regenerator. The displacer is supported via a gas spring

while the piston oscillates against a bounce space. Gas bearings are used

throughout and a bearing gas supply system is built into the engine. As these

details are not essential for implementing the simulation (which relies on

predefined displacer and piston harmonic motions), the reader is referred to

reference Br87 for further information.

3.3 THE SPDE SYSTEM MODEL

The overall system model of the simulated SPDE is shown in figure 3.2

while a listing of the specific geometry used is given in table 3.1. The

regenerator and cooler are treated as one dimensional while the heater may be

one or two dimensional. The expansion space is split into a cylinder cavity

and a heauer plenum. The compression space is divided into upper and lower

variable volume components joined by a conical connecting passage which is

also given a one-dimensional discretisation.

/

l-dlmenslonal

expansion space

heater

pseudo-2-dlmensional

upper compression apace

pseudo-

2-dimenslonal

exp. space / heater

plenum

l-dlmenslonal l-dlmensional

regenerator cooler

pseudo-2-d _menslonal

lower compression space

/ 2" / 2" 2" /I

/ I / / / /l

i / i i / /i

\l-dlmenslonal conical

connecting passage

Figure 3.2 SPDE system simulation model.
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Table 3.1 SPDE simulation geometry.

Expansion Space:

Length
Diameter

Wetted area

Volume at displacer datum

Heater Plenum:

Axial length

Axial flow area

Axial wetted area

Volume

Radial length
Radial flow area

Radial wetted area

Radial entrance area

Volume within radial momentum

control volume

Heater:
No. of tubes

Length

Hydraulic diameter

Regenerator:

Casing inner diameter

Casing outer diameter

Length

No. of layers in gauze stack
Gauze mesh

Gauze wire diameter

Volumetric porosity

Gauze density

Gauze specific heat capacity
Cooler:

No. of tubes

Length

Hydraulic diameter

Upper Compression Space:

Length

Hydraulic diameter

Midpoint flow area

Upstream boundary flow area
Wetted area

Displacer area

Volume at displacer datum

Axial momentum volume

Flange Passage:

Length

Hydraulic diameter

Midpoint flow area

Upstream boundary flow area
Wetted area

Volume

57.24 mm

114.4016 mm

'12.86 cm 2

_7.! cm 3

lu16 mm

289.44 cm2

71.344 cm2

298.92 cm 3

54.515 mm

53.944 cm 2

268.77 cm 2

36.544 cm2

123.32 cm3

1632

90.17 mm

1.27 mm

139.6746 mm

223.5708 mm

25.4 mm

350

200 ins -I

0.04064 mm

0.7105

7833.03 kg/m 3

502.42 J/kK_K

1584

95.25 mm

1,524 mm

3.81 nun

21.656 mm

238.3 cm z

115.95 cm 2

41.462 cm 2

46.259 cmz

89.791 cm 3

89,791 cm 3

24.13 mm

15.457 mm

33.042 cm2

33.042 cm2

293.71 cm2

84.102 cm 3
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Table 3.1 (continued) SPDE simulation geometry.

Linking Annulus:

Length

Hydraulic diameter

Midpoint flow area

Upstream boundary flow area

Wetted area

Volume

Joining Ring Passage:

Length

Hydraulic diameter

Midpoint flow area

Upstream boundary flow area

Wetted area

Volume

Peripheral Compression Space:

Midpoint flow diameter

Midpoint flow area at piston datum

Upstream flow diameter

Upstream flow area at piston datum

Wetted surface diameter

Wetted surface area at piston datum

Piston area

Volume at piston datum

Central Compression Space:

Length

Wetted area

Displacer area

Piston area

Volume at piston and displacer datums

10.846 nun

14.566 mm

40.66 cm 2

32.086 cm 2

121.11 cm 2

44.101 cm 3

61.488 mm

11.683 mm

32.086 cm 2

32.086 cm 2

656.73 cm 2

191.81 cm 3

266.31 nun

35.156 cm 2

266.31 mm

35.156 cm 2

455.72 mm

355.58 cm 2

108.83 cm 2

169.73 cm 3

42.385 mm

144.98 cm 2

55.851 cm 2

56.438 cm 2

242.91 cm 3

Initially, attempts were made at using a strictly one-dimensional

description of the upper and lower compression spaces as well as the expansion

space. However, as expected (Go87), this approach was not successful in

enabling the experimental cyclic performance data to be matched. Hence a

"pseudo-two-dimensional" method of including the actual two-dimensional

momentum boundary conditions was developed. This method is illustrated in

figure 3.3. Figure 3.3.1 shows an expanded view of the expansion space

cylinder+cavity and heater plenum. The mass fluxes at planes A and B are

evaluated using sequential one-dlmensional momentum control volumes. However,

these orthogonal mass flux vectors are advectively and diffusively decoupled

from each other in compliance with the two-dlmensional topology. Similarly,

the one-dimensional boundary condition within the cylinder for the mass flux

computed at plane A is gr - 0. Similar principles hold in figure 3.3.2 for

the upper compression space in which radial and axial velocity and mass flux

components are maintained in their proper vectorial relationship. The pseudo-

two-dlmensional discretisation of the lower compression space shown in figure

3.3.3 is achieved by dividing the space into peripheral and central zones. A

one-dlmenslonal mass flux is thus computed within the lower compression space

based on physically appropriate boundary conditions.
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Figure 3.3.1 Expansion space / heater plenum pseudo-two-dimensional

discretisation.
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Figure 3.3.2 Upper compression space pseudo-two-dimensional
discretisation.

CENTRAL ZONE

X

Figure 3.3.3 Lower compression space pseudo-two-dimensional

discretisation.
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In the two-dimensional heater module, the heater is described as a two-

dimensional parallel aggregation of the 1632 separate tubes of which it is

composed. Hence the two-dimensional flow parameters calculated for any

control volume in the single aggregated tube are assumed to prevail in all the

tubes. This assumption is _t really satisfactory, in view, for example, of

the radial gradient of axial locity that exists in the heater plenum for

positive gas flows (expansioL t_ compression space). This implies that the

flow in the inner rows of tubes _ likely to be rather different from those in

the outer rows of tubes, particul.-ly in terms of turbulence triggering

effects. However, the better alte_ ,ative of specifying several parallel two-

dimensional heater flow paths was n<t a pragmatic alternative owing to the

preliminary nature of this investigation combined with the large computation

costs involved. Such an approach deserves to be tested in the future.

The system is discretised spatially by assigning 12, 7, and 3 control

volumes to the regenerator, cooler, and conical connecting passage,

respectively. The heater is modelled using 7 axial and 6 radial control

volumes while all the remaining components are represented by single control
volumes.

3.4 SIMULATION CONSIDERATIONS

The standard set of equations described in section 2.4 is used. In two

dimensions, the equations are mapped onto a cylindrical coordinate system in

the heater module. Hence, all the control volume parameters in the two-

dimensional heater module naturally reflect its inherent radial symmetry as

shown in figure 3.4.

Every mass/energy control volume is associated with two axial (x) and

two radial (r) momentum control volumes in accordance with the discretisation

attributes listed in section 2.4. A linear radial spatial discretisation

(constant Ar) was selected because, computationally, it is a more severe test

of the simulation than other physically more attractive schemes (such as a

logarithmic radial discretisation with the radius decreasing towards the tube

wall). This arises because not biasing the radii to discretise more

accurately the steeper boundary layer velocity gradients stresses the volume-

averaging procedure inherent in the integral equations more severely, thus

increasing the likelihood of any errors in the simulation becoming manifest.

This is particularly true in terms of testing the generality and viability of

a turbulence model in an integral framework.
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The radial momentum flux boundary values are defined as follows:

Tube wall : (gnr) i,M+I - 0

Axis of symmetry: (gnr)iol - 0

I/qS boundary :

if .5{(_nxAnx)l,j + (gnxAnx)l,j_l} >_ 0:

(Enr) 1,j - 0

if .5{(gnxAnx)1,j + (gnxAnx)l,j_1} < 0:

(gnr)1,j - f{(gnr)1,j}

RHS boundary:

if .5{(gnxAnx)N+l,j + (gnxAnx)N+l,j-l} < 0:

(gnr)N+l,j - 0

if .5{(gnxAnx)N+l,3 + (gnxAnx)N+l,j-l} > 0:

(gnr)N+l,j - f{ (Enr)N+l, 3 }

(3.1)

The interface between the one-dimensional and two-dimensional meshes is

shown in figure 3.5 in terms of an aggregate two-dimensional control volume on

the expansion side of the heater (the regenerator side interface is a mirror

image of the one shown).

(gnx )-S

m

A

Figure 3.5
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[- ........
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momentum interface

region

7.

I

I
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t

I

t

 g,,x)l,j • ,
I

I
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D

Interface between the one- and two-dimensional meshes.
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The mass and energy transport interfaces between the one-dimensional" control

volume I and the two-dimensional control volumes I+l,j (where I+I = {i _ i})

are accomplished naturally in terms of the two-dimensional advective fluxes

(gnx)l,j at plane C and the diffusive fluxes defined by the properties at

planes B and D and the distance between them perpendicular to plane C. This

arises from the discretisation attributes (section 2.4) which locate the

volume-averaged intensive properties of control volume I at plane B (as

opposed to a point, which would only occur, by definition, in a three-

dimensional discretisation). The radial momentum interface advective fluxes

are defined by equations (3.1) and by noting that (gnr)i,j _ 0 in the one-

dimensional control volume I. Diffusive radial momentum interface fluxes are

ignored because of their smallness (compared with the advective fluxes) and

because of the arbitrariness of the definition (gnr)i,j _ 0 (which is, of

course, untrue in reality).

The x momentum interface is more problematic because the definition of

the advective velocities (Vx)I, j in the one-dimensional control volume I is

somewhat arbitrary. The diffusive flux is computed naturally from the

gradient between (gnx)l,j at plane C and (gnx)i at plane A. After numerical

experimentation, the approach finally adopted for the advective flux interface

is defined via (Vx)i, j for the general case {(mnx) I _ (Ax) I _ (Anx)I+l) by:

(Vx)I, j = (Anx)l, j {(Anx) I (gnx)I /(Anx)I. 1 + (gnx)l,j)} / 2p I (Ax)i, j (3.2)

This formulation is mass conservative while allowing (Vx)I, j to vary radially.

The other basic formulation is also mass conservative but assigns a single

value to all (Vx)i, j. This approach did not fare as well as the approach

adopted in tracking the boundary layer growth

Standard Kays and London (KL64) friction factor and heat transfer

correlations are used in all the one-dimehsional control volumes (including

those in the one-dimensional heater module) while all the turbulent terms in

the two-dimensional equations are zeroed, that is:

[v]T (t) = [Vn]q (t) = [V]_ (t) = 0 (3.3)

3.5 RESULTS

The two experimental test points used for the validation exercise are

defined by the parameters listed in table 3.2. Test 46 represents a lower

power point while test 42 approaches the maximum power output of the SPDE. As

the test configuration consists of two back-to-back engines, the wall

temperatures as well as the piston and displacer amplitudes are taken as the

mean of the left- and right-hand engine parameters.
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Table 3.2 Simulation input parameters.

SPDE Test 46

(14/3/86)

SPDE Test 42

(11/9/86)

Working fluid

Frequency (Hz)

Charge pressure (bar)

Heater wall temperature a (K)

Cooler wall temperature a (K)

Displacer amplitude a (mm)

Piston amplitude a (mm)

Helium Helium

99.385 99.569

149.67 150.29

574.555 677.89

308.052 345.11

6.927 7.8016

6.9255 9.1276

Notes:

a. Taken to be the mean of the left- and right-hand engine test parameters.

Three simulations were carried out for each test point, UPD and

equilibrium algorithm simulations for the one-dimensional heater module and an

equilibrium algorithm simulation for the two-dimensional heater module. The

non-dimensional parameters and correction factors associated with the

simulation runs are listed in table 3.3. All the friction factor and heat

transfer coefficient multipliers operating on the Kays and London correlations

are at their baseline values of unity with the exception of those for the

regenerator matrix friction factor. These latter multipliers reduce the

nominal steady-state friction factor in the regenerator by 35% and 45% for

tests 46 and 42, respectively, in order to match the experimental data

according to the validation protocol developed in Go87. This is thought to be

a consequence of radially non-uniform mass fluxes in the regenerator (owing to

entrance effects) and the high frequency of the flow oscillation.

In view of the large Reynolds numbers resultant from the high frequency

and pressurisation of the SPDE flow field, the false diffusion problem in the

enthalpy advection computation (equations (2.55)) becomes problematic in the

regenerator and leads to significant errors in the simulated heater and cooler

heat transfers. This indicates the appropriateness of activating a

regenerator enthalpy transport model of the kind defined by figure 3.6. In

this model, linear upwind spatial extrapolations of the volume-averaged

temperature field lead to a better approximation of the actual advected

temperatures within the regenerator than those determined from equations

(2.55). The particulars of the model are given by equations (3.4) as follows

(the averaging notation has been dropped for clarity):
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Figure 3.6 Regenerator enthalpy transport model.

if (En)i _ 0 then:

(Tn) i = TI_I{I + 0.5Kr(i/In)i_ I) 0.5Kr(I/In)i_iTi. 2 (3.4.1)

if (gn)i < 0 then:

(Tn) Z = Ti{I + 0.5Krli/(In)i÷ I} - 0.5Kr(Iz/(in)i÷1}Ti+ I (3.4.2)

The upwind extrapolation format of these equations is necessary to maintain

the transportive property of equations (2.55). The porous advection

coefficient Kr is introduced as a means of accounting for the deviation of

actual regenerator behavior (for example, non-linear matrix temperature

profiles and oscillating flow effects) from the ideal behavior suggested.

Equations (3.4) apply at all the regenerator discrete momentum volume

centroids (NRF to NRL+I) with the following exceptions:

if (gn)gRF >_ 0 then: (Tn)m_ F - TNsL

if (gn)NgL+l < 0 then: (Tn)m_+1 - TmcF

(3.5.l)

(3.5.2)

It may be noted that at discrete momentum volume eentroid NRF+I, the adjacent

heater temperature would be used for Ti= 2 in equation (3.4.1). Similarly, at

discrete momentum volume centroid NRL, Tm(F is substituted for Ti+ 1 in equation

(3.4.2). This is felt to be physically more consistent than the alternative

of assuming that TN_ occurs at A and Tm_ occurs at B in figure 3.6. In

practice though, the difference between the two approaches is minimal.
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Owing to the magnitude of the maximum Reynolds numbers occurring over

the flow field (table 3.3) in the SPDE, it was found necessary to set K r

almost at unity to obtain agreement with the experimental heat transfer data.

However, it is important to note in the context of comparing the one- and two-

dimensional heater module simulations that no modifications are made to the

nominal Kays and London empirical correlations in the heater.

The maximum Mach and Reynolds numbers are similar for all three

simulations. The smallness of the Mach numbers attests to the absence of any

choking while the magnitude of the Reynolds numbers is indicative of the level

of flow turbulence. Of particular importance are the low characteristic

numbers (Nch) of 24 to 26 (compared, for example, with a Nch range of 60 to

250, depending on operating parameters, for the GM-GPU3 engine (Go87)). This

indicates that with only about 25 complete information traverses per cycle,

ignoring information propagation effects in a simulation may not be

automatically justified. This is borne out by the comparison of the

experimental and simulation data given in table 3.4 for. the two experimental

test points.

Generally, the one-dimensional UPD simulation and experimental results

are in agreement. The maximum energy balance discrepancy is less than 5.5%

(external heat supply for test 42) while the simulated and measured expansion

and compression space mean cyclic temperature and pressure parameters are in

reasonable agreement. In contrast, the one-dimensional equilibrium simulation

shows an overall discrepancy of about 30% in the indicated piston work. The

major source of this error is the mismatchbetween the measured and simulated

compression space pressure profile phase angles (which are given relative to

the piston displacement). Since the indicated worh is proportional to the

Sine of the phase angle, a 1.2 ° discrepancy makes a 19% contributio_ towards

the indicated piston work discrepancy. It should be noted that no energy

balance errors are reported for the simulations owing to a data output

processing error discovered in the code. This error was discovered and

corrected during the METR simulation runs reported in chapter 5. The

corrected code typically yields energy balance errors of the order of .01%.

Hence it is possible that the indicated work discrepancy between the

equilibrium and UPD algorithms is a consequence of information propagation

effects. This is suggested by the relative agreement between all the

remaining experimental and one-dimensional equilibrium simulation parameters

with the exception of the mean compression space temperature. This is higher

in the simulation because of the larger predicted pressure profile phase

angle. However, the overall energy balance simulation results produced by the

equilibrium algorithm (for test 46 at least) apparently agree with those

produced by other simulation codes (Te88) such as the Gedeon GLIMPS (Ge86) and

NASA Lewis SNAP (Te83) codes. In contrast, the MTI harmonic analysis code

appears to conform to the UPD algorithm predictions (Te88). However, this

superfici_ I inter-code comparison is probably only of anecdotal significance

because, in this context, a detailed irreversibility comparison at least is

necessary in order to understand how well the codes compare with each other.

Unfortunately, such data is not yet available.
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In the face of this dilemma, several other suggestions have been made

to explain the inaccuracy of the equilibrium algorithm, for example, gas

leakage between the expansion and compression spaces which is not explicitly

modelled. In particular, if the inclusion of gas leakage were to eliminate

the equilibrium algorithm error, then it may be concluded that information

propagation is not important and that the apparent accuracy of the UPD

algorithm is a spurious numerical effect.

In the light of the uncertainty about the information propagation issue

and the apparent agreement between the equilibrium algorithm, GLIMPS and NASA

codes for the SPDE, NASA and the principal investigator felt that the two-

dimensional module simulation should proceed using the equilibrium algorithm

only pending further work on the information propagation issue, which is

discussed in chapter 4.

The predictions of the equilibrium simulations for the one- and two-

dimensional heaters are similar, at least from an overall cyclic performance

perspective. For test 46, the simulated external heat supplied using two-

dimensional heater module is 2.6% larger than that predicted using the one-

dimensional heater module (with the latter value being within .03% of the

measured external heat supply). In contrast, for test 42, the two-dlmensional

simulated external heat supplied is in closer agreement with the measured

value than the corresponding one-dlmenslonal prediction. The expansion space

mean cyclic temperature (which is strongly influenced by the heat supplied in

the heater) does not exhibit contradictory behavior since, for both tests, the

two-dlmensional simulated value is less than the one-dimenslonal simulated

value which in turn is less than the experimental value.

In this light, a more detailed view of the influence of two-dlmensional

effects may be discussed in terms of figures 3.7 to 3.10. Figures 3.7 and 3.8

show the cumulative heater wall/fluid heat transfer as a function of angle for

tests 46 and 42 respectively while figures 3.9 and 3.10 show the volume-

averaged midpoint heater fluid temperature profiles. In all cases, the one-

dimensional heater UPD and equilibrium algorithm profiles are in close

agreement. The two-dimenslonal heater heat transfer profiles reflect lower

cumulative heat transfers throughout the cycle, converging rapidly towards and

then exceeding the one-dimenslonal profiles beyond 320_ The two-dlmensional

volume-averaged heater midpoint temperatures are less than their one-

dimensional counterparts within a range of about 5 to i0 K over the cycle.

Hence it is evident that the mechanism of heat transfer simulated in the one-

dimensional heater using empirical correlations is different from that

simulated in the two-dimensional heater without such empiricism. In the light

of the high cyclic Reynolds numbers and resultant turbulence, the numerical

discrepancy is an expected result since the two-dimensional simulation assumes

laminar flow in the heater. Thus inclusion of a turbulence model in the

heater should at least reduce the instantaneous numerical discrepancy,

although C'e extent of the narrowing depends not only on the efficacy of
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the turbulence model but also on the errors inherent in using a steady-state

correlation. These issues can only be satisfactorily addressed by an

experimentally based investigation such as that of the METR (see chapter 5).

However, it must be noted that from an overall or systems cyclic energy

balance perspective, the one- and two-dimensional heater module simulations do

not show any appreciable differences. This emphasizes the limitations of

inferring the validity of a simulation code purely from time-averaged

parameter and cyclic energy balance data. Apparent simulation validation

based on such criteria may be a result of error cancellation effects rather

than an indication of actual _e accuracy.

The aggregate system velocxcy fields produced for test 42 for the one-

and two-dimensional heater modules are depicted in figures 3.11 and 3.12. In

each case, the cyclic angle is plotted on the X axis while the location along

the one-dimensional working fluid path is denoted by the Y axis. In terms of

the sign convention of figure 3.1, the expansion space is located on the left

(Y = 0) and the lower compression space on the right, the two spaces being

separated by the heater, regenerator, cooler, upper compression space and

conical connecting passage. The dashed lines indicate negative velocities.

Figures 3.11 and 3.12 exhibit no qualitative differences and are similar in

shape. Quantitatively, there are small differences between the minimum and

maximum velocities amounting to 3% at most. The test 42 one- and two-

dimensional heater module simulation aggregated temperature fields shown in

figures 3.13 and 3.14 exhibit comparative behavior similar to that of the

velocity fields. The notable, yet consistent, exception is that the maximum

temperature in the one-dimensional heater module is 9K greater than that in

the two-dimensional heater module as shown in figure 3.10.

These aggregate system parameter profiles again show that no major

qualitative differences are introduced into the simulation by using a two-

dimensional heater module even on a transient basis when assuming laminar flow

in the heater. Quantitative effects are also relatively small and limited to

the heater itself. Therefore, it seems reasonable to suppose that system-

imposed boundary conditions on the two-dimensional heater module force the

two-dimensional flow in the module to conform on aggregate to that simulated

using a one-dimensional heater module. This in turn suggests that two-

dimensional component simulation may not be an effective way of improving the

s__stem accuracy of Stirling machine simulation. Such improved accuracy is

probably only realisable by simulating most (if not all) of the working fluid

path in two-dimensions. Details of the two-dimensional flow field in the

aggregated heater tube are not presented here since they do not bear directly

upon the systems nature of this discussion. It is sufficient to note that

these profiles are in agreement with laminar oscillating flow results

published in the literature. Details of the two-dimensional flow field are

presented in chapter 5 where they are evaluated against experimental data

produced by the METR.

51



N
<

LLI
-J

_J
U_ O

(I"I

X

N

O @1 L/1
O I_J O
O CO

o
u_ "q"
@1

X

w'q"
E IJrl % IJL'1

•-., 0 U (U S (D

CLIOZ .>-
"O • C) U'J I-- _@
_OH I _ I
UJ I-- fJ
_1 .° H °, C) °.
L0 Z U/ Z -.I Z
Z H O HIll I--I

.el X Q. X _ _"

H I-4 1"4

x X X

x )- N

C)
o O

O ¢_J QP

I I

,I

>-

-4
l

c_
(].I

4J

CO

(I)

c"

E
.r-I

I

c-
-IJ

,r-1

E_
O

r-'l

113

E

-r-I

C_

n
-r--I

r-I

.r'l

CT
QJ

"O

r-1

(I)

-r-I

4-;

-r'l

fJ

O

aJ

>

W

Q
O_

Q.;

L

4-@

b_

52

_x



N

W
.J

U

H
X

N

O lIB

o t4
erl

34 <
,< ._.
Z

_ o u L'&I

OIOZ •
"0 • 0 II'3
_QH I
ILl I-.
J .. I._ ..
£9 Z l/'J Z
ZHQH

O O

W

I--

O
_.1
ILl

H H 1-4

x X x

X _- N

ID
O

X

o
01

@1
I

Z
H
Z

I I

! "" _ i i i

-4

c_

f-

E
.r-I

I

c-
4J
-r-I

O

E

.r-_

c_
r_

.rt

o"

.r-I

4-)

U

O

>

W
0
O_

f_

L

23

._-_

U_

$3

_X



w
_1 o
,_
U

X

N

N

O Ur;
0 m C_I

• 0

m

z _m
a I_ tlJ f".*

Cll O Z • I-- _'_

_J

Z _-4 0 I-_ W I-4
.q[ X _. T I.- Z

I-..I H )-I

x _ x

X _ N

o

cd
IX3

! I

o

o

i i

o

00

_r

o

f,O

(r)

54

_X

4_
_0

r

E

13
I

t-
4J

[_
O

O1

E

*r-I

(_
J3
°r-I

r-_

G)

4_

I10

n
E

4.-;

LU
n
n

O3

L

O_
°_

LL



N_

0
0
0

0
tO
Cq

X

_0
ODO
m 0

w 0
ILl

_X

OJ

X

x

Iw

o

o

i ,

O

W

! !

55

)-

x

r-
4J

C_
o

cO

E

.,'=I

f_

o,"I

.P'l

O"

Q_

f..
Q_

E
-P-I

"O
I

P-I

Q_
-r-I

Q_
f-

4_

C-

Q_

C_

E

Q_

I,I
Q
13_

L

._1

LL



3.6 CLOSURE

The baseline comparison of the one- and two-dimensional heater module

simulated and experimental data shows that two-dimensional flow effects do

impact the transient heat transfer predictions in the heater itself. However,

these effects are not proportionately manifest on the system level where they

only minimally affect the cyclic energy balance. Turbulence effects are

likely to be the major cause of the lack of quantitative correspondence

between the simulated flows in the one- and two-dimensional heater modules

since the former nominally includes the impact of turbulence via heat transfer

coefficient and friction factor correlations. While this justifies isolated

component studies of oscillating turbulent flow, it does not alter the

contention that an overall improvement in Stirling machine simulation accuracy

probably is achievable only if a major portion of the fluid flow path (at

least the heater, regenerator, and cooler assembly) is simulated in two-

dimensions.

The information propagation issue has been established as a possible

performance issue in SPDE class (high frequency, high pressurisation) Stirling

engines. This subject is by no means new to Stirling machine simulation and

has been dealt with by others (such as Organ (Or82) and Taylor (Ta84))

although chiefly in the context of method of characteristics simulations. The

information propagation issue has engendered much contention among Stirllng

machine analysts with some suggesting that it is not physically relevant. If

the results produced here serve no other purpose than to stimulate debate and

definitive research to resolve the information propagation issue, they will

have served NASA well.
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CHAPTER 4

COMPARISON AGAINST AN ANALYTIC SOLUTION

4. i INTRODUCTION

One of the conclusions from the simulation of the SPDE has been that,

apparently, an accounting of information propagation effects permits

convergence between the simulated and measured cyclic energy performance

parameters to be achieved. In particular, the simulated piston indicated work

can be made to agree with its measured counterpart only when the Unitary

Pressure Domain (UPD) algorithm is used. Invocation of the equilibrium

algorithm consistently leads to an over-prediction of the piston indicated

work. This over-prediction is principally related to the phase angle between

the piston displacement and compression space pressure profiles. The

equilibrium algorithm produces an over-estimate of the phase angle which,

although small in absolute terms (i to 2 degrees), is significant because the

indicated work is proportional to the sine of the phase angle. This is the

major contributor towards the observed slmulation/experimental discrepancies

of about 30%.

The following postulates may be used to explain the apparent fidelity

of the UPD algorithm:

The information propagation effect is physically significant and

is being portrayed accurately by the UPD algorithm.

The information propagation effect is physically significant and

its portrayal by the UPD algorithm is a spurious numerical effect.

Information propagation is not significant and the apparent

accuracy of the UPD algorithm is fortuitous.

A feasible means of testing these postulates is to apply the UPD and

equilibrium algorithms to a problem that has a well-defined and validated

closed-form, analytic solution. Ideally, this problem should closely

correspond with the boundary conditions prevailing in Stirling machines in

general and in the SPDE in particular.

The process adopted has been to apply the existing UPD and equilibrium

algorithms as used in the one-dimensional SPDE simulation to the selected

problem. This enables an assessment of whether information propagation

effects offer a physically reasonable explanation for the observed behavior of

the algorithms when applied to the SPDE. Thereafter, the numerical accuracy

of the algorithms is assessed in order to investigate whether spurious

numerical effects are occurring.
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4.2 PROBLEM SELECTION

A general class of analytically soluble problems involving information

propagation effects revolves around the description of acoustic transmission

phenomena in plain tubes. A classic treatise on these problems by Lord

Rayleigh (St26) encompasses analytic solutions including non-llnear effects

such as viscous dissipation and finite boundary heat transfer.

Using Rayleigh's development of Kirchoff's equations of sound, Iberall

(Ibb0) developed a first order analytic solution for the transmission line

problem. This problem is defined geometrically by a length of tube connecting

an infinite cavity with a rigid receiver volume. The analysis seeks to define

the phase lag and amplitude ratio of the pressure profile in the receiver

volume with respect to a sinusoidal pressure variation within the cavity.

Physically, the problem is representative of a transmission line connecting a

signal source to a pressure transducer. The desired outcome of the analysis

is a means of providing design guidelines on the length and diameter of the

transmission line so as to ensure adequate measurement accuracy of the

pressure transducer.

In another investigation, Chester (Ch64) analyzed the behavior of

resonant oscillations in closed tubes. The prescribed boundary conditions are

that one end of the tube is closed while the other is excited by a piston

oscillating at near-resonant frequencies. The objective of the analysis is to

investigate the impact of compressive viscosity and boundary shear viscosity

on the gas oscillations in a well-defined frequency band around resonance in
which shock waves occur.

In another analysis, Jimenez (J173) extends Chester's analysis to a

case in which the closed end of the tube is replaced with an arbitrary closure

condition ranging from fully open to fully closed. By expanding the momentum

equations in terms of a Mach number series, both the amplitude and form of the

oscillations are predicted in order to show that in both the fully open and

fully closed cases, shock waves are needed to describe the observed resonant

behavior.

Although the problem described by Chester and Jimenez is physically

more in conformity with the SPDE geometry, their analyses do not correspond

with the general flow situation prevailing in Stirling machines, particularly

owing to their appropriate neglect of heat transfer effects. Furthermore,

these analyses are focussed on resonant effects rather than on conditions far

from resonance where the classical linearised theory is assumed to prevail.

Hence, despite its lack of boundary condition conformity with Stirllng

machines, Iberall's analysis is preferred as a means of investigating the

validity of the aforementioned postulates. This is Justified by the inclusion

of a more complete fluid dynamic treatment in the analysis and its yield of

information more amenable to intuitive interpretation because of the practical

engineering relevance of the transmission line problem. Furthermore, several

experimental validations of Iberall's analysis have been performed (Wa65,

Go68) which lend credence to using the analysis as a benchmark against which

the simulation may be compared.
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4.3 IBERALL'S ANALYSIS

The geometry of the transmission line is shown in figure 4.1.

z

h____.--_

[---

Figure 4.1 Transmission line geometry.

A tube of length 1 and diameter d is connected between a cavity and an

instrument volume Vi . The following assumptions that are significant to the

comparison exercise are made:

I. The walls of the instrument volume are flexible so that the actual

volume may be replaced by a larger equivalent volume that will

store the same mass of fluid per unit of pressure change.

2. The flow is laminar throughout the tube.

. The gas expands and contracts isothermally in the instrument

cavity.

4. The excitation oscillatory pressure is sinusoldal.

Within these constraints, the following factors are taken into account in the

analysis:

compressible flow in the tube

finite excitation pressure amplitudes
fluid acceleration

finite length of tubing

boundary heat conduction

The analytic solution is represented by equation (116) (not repeated

here) in Ib50. Owing to its complexity, the equation may he conveniently

solved via a computer program. A key pa_t of the solution involves the

computation of Bessel functions. In the computerized implementation of the

analysis offered by Watts (Wa65), a normal series solution is used for kinetic

Reynolds (or Valensi) numbers less than 200, while an asymptotic series

solution is used otherwise. Goldschmied (Go68), however, apparently uses a

normal series solution throughout. In the implementation used here, Watts'
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approach is preferred due to its demonstrated superior numerical accuracy.

However, while Watts performs the calculations in real arithmetic, complex

arithmetic is used throughout here (following Goldschmied) in order to avoid

what appears to be a coding inconsistency in Watts' implementation.

In both Watts' and Goldschmied's implementations, no details of the

method used to determine the excitation pressure amplitude are given. As the

amplitude is a critical parameter from a simulation point of view, the

methodology adopted here has been to choose approximately the largest

amplitude that produces simulated laminar flow throughout the tube (Reynolds

numbers less than 2000). Under certain conditions (particularly at higher

frequencies) this still yields excitation pressure amplitudes that are very

small in comparison with the mean pressure. This produces some unavoidable

truncation errors in the simulation, which although minimized through the use

of double precision arithmetic, must be borne in mind when interpreting the

results produced.

4.4 THE SIMULATION MODEL

The standard SPDE simulation programs have been applied without

alteration to the geometry defining a transmission line. The codes have been

modified to accept a pressure profile and a rigid cavity as boundary

conditions which replace the piston/cylinder boundaries of the SPDE codes.

The fluid dynamics of the instrument cavity are modelled in full so that the

isothermal assumption made in Iberall's analysis is not replicated by the

simulation. The standard Kays and London (KL64) friction factor and heat

transfer coefficient correlations used in the SPDE simulations are applied

without any empirical corrections. Care has been taken to ensure that both

Iberall's analysis and the simulation use identically the same thermodynamic

initial conditions. This has required some reworking of the constants in

Iberall's analysis to reflect the use of temperature rather than density as an

initial condition specifier.

In view of the varying temporal resolution produced by the UPD and

equilibrium algorithms, extracting amplitude and phase information from the

simulated pressure profiles can be subject to large errors, particularly at

low characteristic numbers (less than about 20). Several approaches have been

tested including sine transforms, sine quadratures and globally implicit cubic

spline fits. The last approach has produced the most reliable results and has

therefore been adopted. At each data point, the known excitation amplitude

and phase angle have been used to check the integrity of the cubic spline

fits.

4.5 APPLICATIONS

Two case studies have been performed to compare the analytical and

simulation results. The first geometry corresponds to that used by Watts

(Wa65) to experimentally validate Iberall's analysis. This geometry is

preferred to that of Goldschmied (Go68) in view of the good agreement of
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Watts' experimental data with that calculated, especially under conditions of

resonance.

The second geometry represents a crude approximation of the SPDE in

which the flow pas,sage between the expansion and compression spaces is

modelled as a length of tube with a diameter equal to the average of the

heater and cooler tube diameters. The end effects of the variable volume

spaces are neglected so that the tube termination geometry is identical to

that used in Watts' experiment.

4.5.1 Watts' Experimental Rig

The invariant parameters used to describe the geometry and initial

conditions of the transmission line are listed in table 4.1. These parameters

correspond with those given in Wa65 to describe the 4-ft transmission line

tested. The additional input parameters required, namely, the excitation

pressure amplitude and frequency, are treated as variables.

Table 4.1 Transmission line parameters.

Transmission line length (nun) 1220

Transmission line internal diameter(mm) 7.818

Instrument cavity diameter (nun) 14

Instrument cavity volume (cm^3) .414

Working fluid Air

Mean excitation pressure (bar) .785

Mean system temperature (deg C) 25.745

Using a constant excitation pressure amplitude of 0.016 bars, Iberall's

analysis yields the results plotted in figures 4.2, 4.3, and 4.4. Figure 4.2

shows the exponential decrease in characteristic number as a function of

excitation frequency. Figure 4.3 depicts the variation in amplitude ratio

(that is, the ratio of the instrument cavity pressure profile amplitude to

that of the excitation pressure profile) with excitation frequency. Figure

4.4 shows the corresponding variation in the phase lag of the instrument

cavity pressure profile to that of the excitation pressure. The amplitude

ratio profile replicates that reported by Watts and hence shares the

experimental validity of Watts' data (Watts does not report any phase lag

comparison data). The data span an excitation frequency range centered upon

6]



tO

tO
)-
/

Z

tO

w_

Z

(J
ILl F-

<I1
Z

z_
O_

O0

tO
Z
<(
Or"
I.----

O
_D

B

i I I i i
0 0 0 0 0

0

0

0

0

0

i,I
rY

CD

LL

jaquJnu :)!)rsIJ_1:)oJoq _
62



U_

U_
>-
_J
<_
Z
<_

0

_j _'

Z
0

0 °

UO

L,O
Z
<_

I I I I I

0 O_ a3 _ _0
T--

I I I I

]

I

0
_O
v--

0

v--

0
- 04

v--

0
- 0

v--

_o

0

_ 0

_ 0
04

0

0

m
212

u
c

QJ
k_

c
0

o

x
L.d

LLJ
r'r"

CO
H

L,L

o!_oJ gpn_!idw V

6)



Or)

CO
)-

<
Z
<

Or) _,

<o
pr"
Ld ,,,
m_

-r
n

CO z_
CO

CO
Z
<
pr"
F--

I I I I I I I I I I I I I I I I I

O O O O O O O O O O O O O O O O O O O

I I I I I I I I I

O

O

O
- 04

T'--

O
- O

N
_ I

U

-1
o"

c
o

,w
,.l..a

O o

U

x
Ld

O

O

O

LLI
fie

(.9

LL

(Sep) 51D,I asDqd

64



the first resonant peak. The topologies of figure 4.3 and 4.4 are typical of

acoustic phenomena occurring in tubes. Of particular note is that the first

resonance occurs at an excitation frequency of approximately 66.6 Hz, which

corresponds to a characteristic number of about 4.3 This may be compared

against a characteristic number of 2 (Ch64) predicted by acoustic theory. The

difference in characteristic numbers shows the impact of the irreversibilities

and non-linearities included in Iberall's analysis.

Using figures 4.2 and 4.3 as a guide, the simulation has been exercised

at analytic characteristic numbers of 5.6, I0.0, and 24.1 . These values

correspond, respectively, to conditions close to resonance, midway between

resonance and quiescence, and far from resonance. The comparison between the

simulation and analysis at a characteristic number of 5.6 is summarized by

figures 4.5 and 4.6. In these figures, the amplitude ratio and phase lag are

plotted as a function of the number of integration increments per cycle. In

this context, the lower bound of the variation range corresponds to the number

of integration increments produced by the UPD algorithm (that is, the first or

leftmost point plotted is generated by the UPD algorithm) while all the other

points are generated using the equilibrium algorithm. The demarcated profiles

are generated by the simulation while the unmarked horizontal lines depict the

analytical values.

Figure 4.5 clearly shows that the simulated amplitude ratio asymptotes

toward about 2.3 with increasing temporal discretisation (or number of

increments per cycle). At 200 increments/cycle the discrepancy between the

simulated and analytical amplitude ratio amounts to 14%. However, the UPD

algorithm (6 increments/cycle) produces an amplitude ratio discrepancy of

almost 54%. An examination of figure 4.6 shows a similar trend for the phase

angle behavior in which the simulated values asymptote toward about 5.8 deg,

yielding a discrepancy of 48.4% with the 11.251 deg phase lag produced by

Iberall's analysis. The UPD algorithm produces phase lags of 38 and 34 deg at

the instrument cavity pressure profile minimum and maximum, respectively,

indicating a mean discrepancy of 220%.

These comparison data generated under conditions close to resonance

indicate that two mechanisms are operating simultaneously, one numerical and

one physical. Numerically, at low characteristic numbers (below 20), the

numerical accuracy of the UPD algorithm is insufficient to represent

adequately the transient phenomena taking place. In other words, there is a

certain minimum temporal discretisation below which use of the UPD algorithm

is not warranted as a result of its numerical accuracy limitations.

Physically, information propagation effects similar to those described by

Jimenez (Ji73) are occurring. These effects result in a progressive

steepening of the pressure wave until such time as at the onset of resonance,

a discontinuity, or shock, forms. Because both the equilibrium and UPD

information propagation algorithms do not describe shock formation phenomena,

the algorithms are invalid in the presence of pressure wave discontinuities

(Go87). Hence, should resonance-induced pressure wave discontinuities exist

in the SPDE, for example, then neither the UPD nor the equilibrium algorithm

could, by definition, correctly model the information propagation. However,

in view of the SPDE having Nch > 20, the existence of such discontinuities is

considered unlikely.
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Figures 4.7 and 4.8 depict the amplitude ratio and phase lag behavior

at a characteristic number of i0 (excitation amplitude and frequency of .022

bars and 23.8 Hz respectively). The profiles show the same topologies as

those of figures 4.5 and 4.6 except that the phase lags at the instrument

cavity pressure profile maximum and minimum appear to be more divergent

because of the plot scaling. The asymptotic phase lag discrepancy is reduced

to about 33% from the 48% noted under conditions closer to resonance.

Similarly, the asymptotic amplitude ratio discrepancy is reduced to 4%. Hence

the observations made above are applicable under these conditions as well with

the additional note that the influence of information propagation effects

becomes less pronounced the further the operating point from resonance.

Lastly, at a characteristic number of 24.1 (excitation amplitude and

frequency of .05 bars and 11.7 Hz, respectively), figures 4.9 and 4.10 show

that conditions are sufficiently far from resonance that only numerical

effects remain. In figure 4.9, the amplitude ratio discrepancy varies between

1.1% and .9% for the UPD and equilibrium algorithms, respectively. Figure

4.10 effectively shows that the simulated phase lags bound the analytic phase

lag in a somewhat random fashion which, owing to their smallness, is

symptomatic of numerical effects. As the SPDE also yields a characteristic

number of 24, these data show that the temporal accuracy of the UPD algorithm

is just adequate to portray the information propagation behavior of the SPDE

with some qualitative confidence although, quantitatively, the

representational accuracy of the results is probably somewhat less than that

suggested by the small SPDE simulation energy balance errors achieved.

4.5.2 Pseudo-SPDE Geometry

The invariant parameters used to define the pseudo-SPDE geometry are

listed in table 4.2.

Table 4.2 Pseudo-SPDE parameters.

Transmission line length (mm) 321.25

Transmission line internal dlameter(mm) 1.397

Instrument cavity diameter (mm) 14

Instrument cavity volume (cm^3) .414

Working fluid Helium

Mean excitation pressure (bar) 150.29

Mean system temperature (deg C) i00
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In selecting this geometrical configuration, no attempt has been made to take

account of the effect of either the expansion or the compression space by

increasing the volume of the instrument cavity. Although Iberall and

Goldschmied report data for volume ratios of as much as 50 to I, in the case

of the SPDE expansion space for example, using the tube data of table 2, the

cavity-to-tube volume ratio amounts to about 522 to i. In terms of the

validation data reported by Watts and Goldschmied as well as the assumptions

made in Iberall's analysis (see section 4.3), there does not appear to be any

solid basis for extrapolating the analysis by an order of magnitude in volume

ratio terms. Furthermore, the mechanism of pressure wave generation in the

SPDE is very different from that used by Iberall. Hence the main value of

Iberall's analysis in terms of understanding the gas dynamics of the SPDE is

to test whether closed tube resonance effects are a likely cause of the

observed phenomena. In this context, it thus seems desirable to maintain the

congruency of the tube boundary conditions with those that produced the high

level of agreement between Watts' experimental data and Iberall's analysis.

Using an excitation amplitude of .9 bars, the results of applying

Iberall's analysis to the pseudo-SPDE geometry are shown in figures 4.11 to

4.13. Figures 4.11 and 4.12 show that the first resonant peak occurs at an

excitation frequency of 504.8 Hz, 5.1 times larger than the nominal i00 Hz

operating frequency. At I00 Hz, the amplitude ratio amounts to 1.05 while the

phase lag is .327 deg (figure 4.13) and the characteristic number is 35.2

Hence even though the pseudo-SPDE geometry characteristic number is greater

than that of the actual SPDE (approximately 24), these results show that

closed tube resonant effects are not likely to be the cause of the observed

SPDE phase angle behavior (the difference in characteristic numbers serves to

increase the conservative nature of this inference).

A comparison of the simulated and analytical data for the pseudo-SPDE

geometry is given in figures 4.14 and 4.15. The comparison is performed at a

frequency of 99.569 Hz (taken from an MTI test) and an excitation amplitude of

.9 bars. Figure 4.14 yields an amplitude ratio discrepancy of .55% for the

UPD algorithm, increasing to .65% for the equilibrium algorithm at 90

increments per cycle. It is interesting to note that in this case the

simulation over-predicts the amplitude ratio while in the previous case (in

which the transmission line is 3.8 times longer) the simulation under-predicts

the amplitude ratio. This is a probable result of the neglect of the

advection terms in the momentum equation which Iberall uses to produce

equation (116) (Ib50).

[In the second paragraph of section 4 on page I00 of Ib50, Iberall makes

reference to the fact that his analysis is based on Kirchoff's equations of

sound. Tracing this to the relevant equation quoted by Rayleigh (St26, page

315, equation 13), in the class of problems being considered, Iberall

apparently agrees with Rayleigh's assertion (St26, page 3) that "...Whenever

the motion is very small, the (advective) terms u du/dx, etc., diminish in

relative importance, and ultimately, D/Dt - d/dt (or the substantive and total

derivatives are equal)." This assumption does not apply to SPDE conditions

nor does it lend credence to cases in which large instrument cavities produce

fluxes big enough to produce significant momentum transport. These
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limitations should be borne in mind when comparing the simulated results

(which include all the advectlve terms) with their analytic counterparts.]

Due to the smallness of the phase lags, figure 4.15 is inconclusive in

revealing any trends that cannot be ascribed to systematic numerical effects,

in particular those produced by the cubic spline fitting procedure.

4.6 INTERPRETATION

Under resonant conditions in which information propagation effects are

responsible for the observed transmission line behavior, the inadequacy of the

equilibrium information propagation hypothesis is demonstrated. This is

manifested by the equilibrium algorithm producing results that asymptote

towards values which are not in agreement with those produced by Iberall's

analysis. Hence, should such effects exist in the SPDE, they would not be

properly accounted for by an equilibrium information propagation hypothesis.

As both the UPD and equilibrium algorithms are based on a temporal

integration scheme which is only first order accurate, the comparison data

show that the algorithms quickly lose their physical validity at temporal

resolutions below 20 to 30 increments per cycle. Hence, use of the UPD

algorithm to simulate the SPDE at an effective temporal resolution of 23 to 24

increments/cycle is somewhat risky as the integration algorithm is operating

in a region of marginal temporal accuracy. Therefore, the comparison exercise

is inconclusive in determining whether the UPD algorithm accurately can

portray the information propagation behavior of the SPDE in a quantitative

sense.

In other words, the data show that the numerical errors produced by a

first order accurate, implicit integration algorithm at time steps large

enough to satisfy the UPD hypothesis at low characteristic numbers do not

permit an assessment of the physical accuracy of the UPD algorithm to be made.

This conclusion in effect reflects the limitations of the pressure-linking

algorithm itself, which is defined in essence by equation (2.47). Since the

off-diagonal pressure term coefficients are given as a product of the time

step At and a geometrical factor A2/V, these coefficients are positive

definite and are independent of the working fluid state. Therefore, an

implicit solution of the pressure equation (2.47) implies infinite information

propagation irrespective of the time step. Thus, satisfying the UPD

hypothesis is necessary physically in order to ensure that the actual and

numerical information propagation rates match. Decreasing the time step

towards the equilibrium limit thus effectively increases the information

propagation rate towards infinity. Therefore the data show that the numerical

effect of the time step size predominates, submerging the simultaneously

occurring physical effect.

Thus before any further assessment of the physical relevance of the

information propagation hypothesis is attempted, the impact of numerical

accuracy on the UPD algorithm in particular needs investigation.
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4.7 NUMERICAL ACCURACY CONSIDERATIONS

The physical adequacy of the first order temporal accuracy of the

simulation code at low characteristic numbers may be evaluated by using a more

accurate temporal integration scheme. The issue of significance in this

endeavour is to find a temporally more accurate scheme which does not destroy

the hypothesized information propagation modelling characteristics of the UPD

algorithm in particular. After studying the Gedeon GLIMPS methodology (Ge86)

and further review of the literature, the following observations can be made:

a. The GLIMPS code is a particular case of a general class of

numerical algorithms which may be conveniently referred to as 'multi-

step implicit' methods. In these methods, a given time increment is

resolved into m sub-steps so that each sub-step is solved implicitly

via a single matrix inversion, with both m and the magnitude of the

time increment being arbitrary. Each sub-step m may be further divided

into n increments so that the order of the temporal gradient

approximation used in each sub-step is restricted only by the

requirement that k _ n, where k is the number of increments required to

implement a particular integration scheme. For example, a 5th order

backward difference approximation would require n _ k - 6.

Hence the GLIMPS code uses a time increment equal to the cycle

period with one sub-step (that is, m - I) with n apparently being in

the range of 6 to i0 and k = 3. In contrast, the 'UPD simulation' has

n - k -LI with m set equal to the integer nearest the characteristic

number. Hence, if the numerical accuracy of multi-step implicit

methods is a monotonically increasing function of n, then a generalised

version of the GLIMPS'code (without the cyclic equilibrium closure

restriction, in particular) theoretically should be physically valid

for characteristic numbers _ i. However, as a general proposition,

multi-step implicit methods should be valid for all characteristic

numbers, although it is hard to conceive of Stirling machines being

built with characteristic numbers approaching i.

b. It is possible to construct a fully implicit temporal integration

procedure based on the Crank-Nicholson scheme, which is second order

accurate, while retaining the information propagation characteristics

of the UPD algorithm.

Another approach to testing the numerical accuracy of the algorithms is

to implement the full pressure domain splitting (PDS) algorithm discussed in

section 2.6. However, in view of the large increment in computational effort

associated with the PDS algorithm and, therefore, NASA's reluctance to pursue

this approach, it was decided to limit the numerical accuracy investigation of

the 'UPD simulation' to an implementation of the Crank-Nicholson integration

scheme.

4.8 THE CRANK-NICHOLSON INTEGRATION SCHEME

A generalised two-step temporal integration scheme may be defined by:

8O



d_/dt - K d_/dt(t+At ) + (I-K) d@/dt(t ) (4.1)

If K - 0, equation (4.1) represents an explicit scheme of O(At); if K -

i, equation (4.1) is an implicit scheme of O(At); and, if K - .5 then equation

(4.1) represents a Crank-Nicholson scheme of O(At2).

Thus, choosing K - .5 and discretising:

_(T+At)/At - .5 d_/dt(t+at ) --_(t)/AT + .5 d_/dt(t ) (4.2)

Hence by setting d#/dt(t ) of the current time step equal to d_/dt(t+at)

of the previous time step (which by definition is implicitly determined), the

Crank-Nicholson scheme retains much of the stability of the fully implicit

scheme as confirmed by von Neumann stability analysis (Ro82), although the

method is not unconditionally stable. Stability problems arise when At

becomes large enough for some Fourier modes to overshoot, in which case, the

O(At 2) error terms for the Crank-Nicholson scheme will exceed the O(At) error

terms for the implicit scheme. Furthermore, equation (4.2) retains the

information propagation characteristics of the first order implicit scheme

used in the UPD simulation.

4.9 RESULTS

The parameters describing the transmission line used as the basis for

the comparison exercise are listed in table 4.3. These parameters correspond

to those given in Go68 table V and Wa65 figure 6.

Table 4.3 Transmission line parameters.

Transmission line length (mm) 1220

Transmission line internal diameter (mm) 4.66

Instrument cavity length (mm) i

Instrument cavity volume (cm^3) .414

Gas Air

Mean excitation pressure (bar) .77

Excitation pressure amplitude (bar) .00077

Mean system temperature (deg C) 28.98

The computerised implementation of Iberall's analysis has been

carefully rechecked against Watts' results given in Wa65 table 6 to ensure

exact agreement.

The simulation parameters used are given in table 4.4

8]



Table 4.4 Simulation parameters.

No. of transmission llne contr_ volumes 20

Global friction factor corre_ Itiplier i

Global heat transfer coefficie _ lation multiplier 1

Convergence energy balance error (%) <.05

The results of exercising the UPD algorithm using both the implicit and

Crank-Nicholson integration schemes against Iberall's analysis are listed in

table 4.5 as a function of frequency (and, therefore, of _haracteristic number

since Nch Is inversely proportional to frequency). The tabulated data are

plotted in figures 4.16 to 4.19.

In all cases, the amplitude ratio errors produced by the Crank-

Nicholson scheme (CN-s) are less than those produced by the implicit scheme

(l-s). The CN-s phase angle errors are also less than their l-s counterparts

for Nch > 8.15. Below this, the time steps are large enough so that the CN-s

truncation errors exceed those of the l-s as noted in section 4.8 above.

It is also evident that the phase angle differences between the CN-s

and l-s are larger than the amplitude ratio differences, which is consistent

with the notion that information propagation effects are more apparent,

numerically, in the phase angles.

If one accepts that a 10% discrepancy represents a reasonable level of

validation (see Go87, section 7.7.4), then based on the errors reported in

table 4.5, the CN-s is valid for Nch _ 13.27 while the l-s is valid for Nch

20.38 The accuracy differences are also far more pronounced for the phase

angles than for the amplitude ratios as shown by figures 4.17 and 4.19.

Based on this discussion, the UPD and equilibrium algorithms are

compared at Nch of 8.15, 13.27, and 20.38, respectively corresponding to cases

in which neither the CN-s nor the l-s schemes are valid, only the CN-s is

valid, and both schemes are valid. The results are given in tables 4.6 and

plotted in figures 4.20 through 4.31.

In all cases, amplitude ratio errors decrease with decreasing

integration time step (increasing number of increments per cycle). However,

the amplitude ratios asymptote to a constant value beyond 50 increments per

cycle. With the exception of figures 4.29 and 4.31, the phase angle errors

also reveal this asymptotic behavior except that the limiting error is about

50% for Nch < 20. The behavior of the CN-s in figures 4.29 and 4.31 may be

inconsistent and requires further study before comment.
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In general terms, these phenomena confirm those observed in section

4.5, namely, that under assumed equilibrium information propagation conditions

at low characteristic numbers, the errors in modelling information propagation

using the equilibrium hypothesis produce incorrectly simulated phase angles

while reducing the simulated amplitude ratio errors. The fact that this

behavior is exhibited by both the CN-s and l-s indicates the existence of a

physical effect that is not properly modelled by either the CN-s or the l-s

techniques owing to their numerical limitations.

4.10 CONCLUSION

Essentially it seems that numerical integration errors are a reasonable

hypothesis for describing the limited range of applicability of the one-step

implicit application of the UPD algorithm. This conclusion is also consistent

with the apparent success of the GLIMPS code in duplicating Watts' amplitude

ratio data for Nch < 8.15 However, a generalised implementation of a multi-

step implicit method would have to be developed and applied to the

transmission line to give this assertion better credence.

A further complicating issue arises from the difference between the

UPD/equilibrium and GLIMPS codes in the numerical implementation of the

conservation balances. The former uses a pressure-linked algorithm (with the

limitations discussed in section 4.6) while the latter does not. This poses

the question as to whether a pressure-linked algorithm is valid at low

characteristic numbers or, for that matter, whether it is valid for gas-

dynamic flows at all. Hence, there is a possibility that such a lack of

validity may synergistically or in isolation account for the behavior of the

UPD/equilibrium simulations when applied to the SPDE as a particular case. In

general, such behavior has not been observed (Go87) when, apparently, the

characteristic numbers have been large enough (greater than 60) to make the

assumption of infinite information propagation reasonable.

As a practical consequence of this work, it is recommended that the

SPDE one-dimensional simulation code be converted from an l-s to a CN-s. This

should provide a better margin of safety between the validity limit of the CN-

s and the operating characteristic number of the SPDE.

In terms of the two-dimensional SPDE code, it may be argued that even

the CN-s UPD simulation is inadequate, particularly in terms of implementing

workable turbulence models. This arises because of the apparent conflict

between the smaller time steps required for these models and the larger time

steps required for modelling information propagation using a first order

implicit algorithm. Thus, absent the availability of viable alternatives

(such as PDS or multi-step implicit methods) it seems appropriate at this

stage to concentrate on the turbulence modelling in the two-dimensional code

using the equilibrium hypothesis and simply acknowledge the resulting

existence of information propagation errors at low characteristic numbers.
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4.11 PROGNOSIS

In view of the wealth of information gleaned from comparing the

simulation codes against Iberall's analysis, it is recommended that such a

comparison be adopted as a universal validity check for Stirllng machine

simulation codes.

The development of either a PDS or a generalised multi-step implicit

method (with the latter alternative appearing preferable at this stage) for

Stirling machine simulation as well as an independent investigation of the

validity of pressure-linking both appear to be worthwhile future research

activities.
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CHAPTER 5

SIMULATION 0 Y THE MECHANICAL

ENGINEERING TEST RIG

5. i INTRODUCTION

The philosophy guiding the simulation of the mechanical engineering test

rig (METR) was to provide a means of using its empirical data in a generalised

simulation of Stirling cycle machines in both one and two dimensions. The

following methodology was conceptualised for accomplishing this goal:

a. Validate a system-based simulation of the METR including a two-

dimensional description of the test section. The primary goal of
this exercise was to define a turbulence model that will enable

the experimental data to be matched in the context of a system

simulation that includes an accurate description of actual

oscillating flow boundary conditions.

b. Based on the validated two-dimensional code predictions, develop a

set of friction factor and heat transfer correlations which may be
used in a one-dimensional simulation.

C. Compare the one-dimensional predictions directly against the

empirical data and, if necessary, refine the correlations.

d. Test the one- and two-dimensional simulations against available

experimental data for actual Stirling hardware, in this case, the

SPDE.

The work described in this chapter represents the progress made in

accomplishing these tasks. The simulation activities listed fundamentally

depend on the availability of METR experimental data of sufficiently high

-quality. For this reason, at the termination of the project, sufficient

experimental data were available only to make a preliminary attempt at

completing task a (see chapter I).

Two sets of experimental data are available. The first set is used to

define a baseline simulation case against which the effect of turbulence

models may be measured. This baseline excludes all turbulence modelling from

the two-dimensional components (that is, the test section is described two-

dimensionally in purely laminar terms) and uses standard Kays and London

(KL64) steady-state friction factor and heat transfer correlations for all the

one-dlmensional components.
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A further objective of the baseline simulations was to provide feedback

to Simon and Seume on refinements to the METR instrumentation system and, in

particular, on which additional measurements were necessary in order to

achieve adequate simulation validation. In this context, it must be noted

that the baseline data provided by Seume and Simon are of a preliminary nature

and were intended not only to 'shake down' the METR instrumentation system but

also to refine the mechanics of the raw experimental data transfer and

processing. These data are acknowledged to be unsuitable for turbulence model

development and simulation validation (Se88).

The second set of data, which is nominally of sufficient quality for

simulation development and validation, consists only of half a cycle of data

at one probe location. Unfortunately, this data set is really too small and

insufficiently free of systematic errors to allow a truly meaningful attempt

at validating the turbulence model developed. Hence the model proposed is of

a tentative nature only and, therefore, fulfillment of the overall goal as

well as the stated objective (of completely validating the turbulence model

developed) must await the availability of further experimental data.

5.2 DESCRIPTION OF THE TEST RIG

A schematic of the METR as simulated is shown in figure 5.1. The rig

consists of a combination of seven components arranged axially in a

symmetrical pattern about the test section midpoint. A piston/cylinder is

located on the left-hand end of the rig while the right-hand end is open to

the atmosphere. The universal sign convention adopted is that the positive

direction is toward the right-hand or open end of the rig. The METR is

simulated as operating with purely isothermal boundaries since no heat

transfer measurements are as yet available. Hence all the boundary

temperatures are kept constant at the ambient value.

The individual rig component descriptions used in the baseline

simulations correspond to those listed in table 5.1. This table is the output

of a geometry definition computer program which enables the rig dimensions to

be arbitrarily altered in terms of the defined rig components and component

sequence. The program may be readily modified to include new component

definitions as well as different sequences of defined components. Table 5.1

reveals that care has been taken to define those minor details of the rig

geometry that are judged to have a more than negligible effect on the fluid

flow.

The spatial discretisations employed (table 5.1) conform to those

established as suitable for an integral description of Stirling machine fluid

dynamics (Go87). The ii x 8 mesh used in the test section for the two-

dimensional description (21 axial control volumes are used in the one-

dimensional description) is a compromise between adequate spatial resolution

and the available computing power. It should be noted that 'adequate' spatial

resolution for an integral (or discrete volume) analysis is very different

from that required for a differential analysis. In this context, increasing

the spatial resolution toward differential levels would require the use of a

98



I

I

_J

%
N
0

J:=

I 0

U

I

I

°¢..

I---

e-

"E

_J
e-

°_.,.

%
U

e--
U

O

U
°r-

E

r-

99



Table 5.1 METR baseline simulation input parameter set.

Expansion Space

Piston stroke(mm) : 355.6

Piston end cap thickness(mm) : 6.0

Piston end cap taper(deg) : 30.0

Clearance length at piston TDC(mm) : 3.1750

Cylinder diameter(mm) : 355.6

Angular velocity(rpm) : 11.25
Conical Transition Piece

Axial length(mm) : 212.725

Cylinder mating diameter(mm) : 355.6

Flexible joint mating diameter(mm) : 127.0

# of control volumes ; 3
Flexible Joint

Cylinder side axial length(mm) : 21.0

Cylinder side diameter(mm) : 152.0

Cylinder side # of control volumes : 2

Nozzle side axial length(mm) : 63.0

Nozzle side diameter(mm) : 139.7

Nozzle side # of control volumes : 2

Spacer

Axial length(mm) : 63.5

Cylinder side flange length(mm) : 3.175

Nozzle side flange length(mm) : 6.35

Diameter(mm) : 139.7

Cylinder side flange diameter(mm) : 127.0

Nozzle side flange diameter(mm) : 127.0

# of control volumes : 3

Heat Exchanger

Axial length(mm) : 50.8

Cylinder side flange length(mm) : 9.525

Nozzle side flange length(mm) : 12.7

Casing diameter(mm) : 127.0

Hydraulic diameter(mm) : 2.1824

Flow area ratio : .556

# of control volumes : 4

Nozzle

Size (1-small, 2-1arge) : I
# of half-nozzle control vols : 3

Test Section

External diameter(mm)

Axial length(mm)

# of axial control volumes (4 minimum)

# of radial control volumes (2 minimum)

Wall conductivity(W/m-K)

Wall density(kg/m^3)

Wall specific he@t capacity(J/kg-K)

Working Fluid

WorkinK fluid (l_Air, 2-Helium, 3-Hydrogen):

: 50.8

: 2609.1

: 21 (l-d);

11 (2-d)
: 8

: 1.0211

: 2466.84

: 753.624

i
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supercomputer, for which no funds were available. Hence, determining the

impact of radically changing the test section spatial resolution must of

necessity be neglected here.

5.3 BASELINE CASE SIMULATION APPLICATION

The one- and two-dimensional simulation codes used to model the METR are

in essence identical to those used for the SPDE. The codes are rearranged to

conform to the geometry of the METR by excluding the regenerator and the

compression space and by reconfiguring the connecting ductwork. The two-

dimensional heater module is adjusted to represent the geometry of the single

tube test section. The pseudo-two-dimensional heater boundary condition used

at the expansion space side of the SPDE heater is replaced with a one-

dimensional boundary condition appropriate to a nozzle (with an axially

varying flow area).

In converting the SPDE codes to the METR geometry, the following

revisions to the numerical algorithm have been implemented:

The energy balance reporting error has been corrected yielding

typical energy balance percentage errors of order 10 .2 or less

(compared with errors of order i0 ° previously).

Computationally more efficient discretisation methods have been

developed for calculating the dissipation and reversible

thermal/kinetic energy conversion terms.

Provision has been made for describing control volumes that may be

generated as bodies of revolution based on continuous functions

(cones, paraboloids, etc.).

In order to fulfill the objective of generating a baseline laminar flow

case for the two-dimensional simulation of the test section, the following

adjustments to the code have been made:

The Reynolds stress tensor, turbulent heat flux and dissipation

terms have been removed from the momentum and thermal energy

equations, respectively (equations 3.3).

Mass flux fluctuations generated by the iterative integration

algorithm are numerically filtered out (such fluctuations are a

manifestation of a chaos model implicitly embedded in the

algorithm). A radially polarised cut-off amplitude of 10 -I

kg/m2.s is imposed, which has the effect of removing all the

turbulence with RMS amplitudes larger than the cut-off amplitude;
the smaller scales remain.
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5.4 BASELINE CASE RgSULTS

The primary focus of the following discussion is directed towards a

comparison of the available experimental data with its simulated counterparts.

This does not constitute a rigorous validation but does serve to expose those

areas requiring further experimental and analytic attention.

5.4.1 Experimental Data

The experimental data set made available by Seume and Simon for

validating the simulation consists of:

bulk mean velocities, that is, area-weighted, one-dimenslonal flow

velocities

axial ensemble-averaged mean velocities and root-mean-square (RMS)

velocity fluctuations at seven locations on two radial planes (at

the midpoint and toward the cylinder end of the test section)

These data were gleaned for the parametric conditions shown in table 5.2.

Table 5.2 Parameters for the baseline case experimental data.

Date Engine Speed

(rpm)

Probe Position (nun)

(relative to cylinder end)

4/22/88 11.3 1304 (midpoint)

4/24/88 11.3 609

4/26/88 33.5 1304 (midpoint)

The data set supplied is not entirely adequate for simulation validation

purposes since several key data are missing. Specifically, the missing data

include:

ambient pressure and temperature conditions

transient leakage flow rates past the piston

The actual rig geometry is considered to be adequately represented by

the description encompassed within table 5.1 with the usual uncertainties

present in the fin surface geometry assumed for the heat exchangers. On the

advice of Seume, a standard Kays and London (KL64) louvered plate-fin surface

designated 'I/4(b)-ll.l' has been assumed together with its steady-state

friction factor and heat transfer coefficient correlations.

In the absence of any cylinder leakage data, the simulation is performed

on the basis that no leakage occurs in the cylinder. This may produce

discrepancies between the experimental and simulated bulk flow velocities.
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Should cylinder leakage actually occur, then the discrepancies maybe used as
an a posteriori meansof assessing what leakage should be incorporated into
the simulation to match the experimental data.

The unavailability of measuredambient temperatures and pressures is of
muchgreater significance because the rig operates as an open system.
Furthermore, since the two tests at a constant rig speed of 11.3 rpm were
performed on different days, local weather conditions are such that 7 to i0 %
variations in barometric pressure are possible between tests. This can
produce significant discrepancies in comparing the simulation and experimental
data. Nevertheless, for the purpose of carrying out the validation exercise,
it is necessary to assumean ambient temperature and pressure. Values of
26°C and 0.98274 bar, respectively, were chosen, these being typical averages
for the days during which the tests were conducted.

5.4.2 Comparison of System Results at 11,3 rpm

Figure 5.2 shows a comparison of the experimental bulk velocity profiles

at 11.3 rpm with those simulated in one dimension. The difference between the

profiles simulated at probe positions of 609 and 1304 mm are so small relative

to the scale of the graph that the two profiles appear coincident. Figure 5.3

compares the experimental bulk velocity at 11.3 rpm at the 1304 mm probe

position with that produced by the two-dimenslonal simulation. There is no

discernable difference between the one- and two-dimensional bulk velocity

profiles at the 1304 mm probe position, which is also true for the system

axial velocity profiles shown in figures 5.4 and 5.5. Other than the

difference in axial discretisation, the one- and two-dimensional simulated

profiles are identical.

The phase of the simulated and measured profiles in figures 5.2 and 5.3

are in agreement, while the difference in amplitude of the profiles shows the

extent of the piston leakage. This leakage is less than that expected by

Seume and Simon, who used an ideal velocity profile to make their

determination. The irregularity of the measured profiles at peak flow

velocities is believed to be caused by adhesion of the piston seal to the

cylinder wall and/or other mechanical effects.

Of particular concern in figure 5.2, however, is the large difference in

experimental amplitudes relative to the coincidence of those measured. When

the flow is negative between 0 ° and 180 ° (by convention, flow toward the

piston), the pressure at 1304 mm is greater than that at 609 mm since the

pressure gradient is opposed to the shear forces acting on the flow. This is

confirmed by the both the one- and two-dimensional simulated pressure profiles

shown in figures 5.6 and 5.7. Hence, since the system is essentially

isothermal over the test section (see figures 5.8 and 5.9), the density at

1304 mm is greater than that at 609 mm. Hence, between about 80 and i00

degrees of crank angle when the flow acceleration is small or zero, in order

to conserve mass, the velocity at 609 mm should be greater than that at 1304

mm, which is indeed the case (also shown by the simulated data).
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Conversely, during positive flow (between 180 ° and 360 °) the velocity at

609 mm should be less than that at 1304 mm (shown by the simulated data),

which does not agree with the experimental observations. Furthermore, the

magnitude of the experimental velocity drop is not intuitively credible in

view of the small pressure drops expected in an atmospheric rig with piston

leakage. After consultation with Seume, it was concluded that the most likely

cause of the discrepancy is a systematic error in the hot-wire anemometer

calibration. The 609 and 1304 mm tests were performed on different days and

the anemometer calibration procedures used did not account for barometric

pressure differences. Hence, because hot-wlre anemometry is dependent on

velocity as well as density, an ambient pressure variation of about 5 to 7 %

could account reasonably for the apparent axial velocity gradient measured.

An additional source of systematic error is the manner in which the radial

mean velocities measured are spatially integrated to yield the bulk flow

velocity. It was thus agreed that future tests should include anemometer

calibration procedures that include the effect of ambient pressure. Also, a

better method of computing the bulk velocity was suggested.

A comparison of the system pressure profiles generated by the one- and

two-dimensional codes at 11.3 rpm is shown in figures 5.6 and 5.7. The

pressure drop across the test section predicted by the one-dimenslonal code is

larger than that predicted by the two-dimenslonal code over the cycle. Hence

the pseudo-steady-state friction factor assumption used in the one-dimensional

code generates larger dissipation than that produced by the two-dimensional

code. The differences in profile topology apparent principally at the

nozzle/test section interfaces are a manifestation of the difference in bulk

fluid temperatures produced by the one- and two-dimenslonal codes. The two-

dimensional code produces a lower bulk temperature over the test section than

its one-dimensional counterpart (see figures 5.8 and 5.9). This is

intuitively reasonable since the one-dimenslonal code, which uses a pseudo-

steady-state heat transfer correlation, does not describe radial temperature

gradients. Such gradients are shown clearly by the radial temperature profile

(figure 5.10) produced by the two-dimensional code. Over most of the cycle,

the temperatures adjacent to the wall are relatively larger than those of the

flow core even though the net temperature difference of .3 K is small. Thus,

in the two-dimensional code, the actual wall/fluld heat transfer occurs in the

boundary layer with the radial temperature gradient being constrained chiefly

by turbulent enthalpy transport. Hence the extent to which the bulk

temperatures predicted by the one- and two-dlmenslonal codes differ is

probably a direct effect of the exclusion of such transport from the two-

dimensional simulation.

Another difference between figures 5.6 and 5.7 is the relative

smoothness of the one-dimenslonal plot. The jaggedness produced by the two-

dimensional code is caused by residual simulated turbulence below the cut-off

of the numerical filter used to exclude such turbulence deliberately. It is

interesting to note that the occurrence of the low level noise passing the

filter is approximately in phase with the corresponding high levels of

measured RMS velocity fluctuation shown in figures 5.11 and 5.12. The

magnitudes of the pressure drops simulated across the test section are less

than 500 Pa. An assessment of the accuracy of these predictions requires the
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installation of appropriate pressure transducers on the test rig. Hopefully,

this will be accomplished in the future.

The system temperature profiles of figures 5.8 and 5.9 share a common

topology but the two-dimensional profile magnifies the deviations from the

isothermal mean over the test section. The adiabatic temperature variation in

the cylinder is readily apparent, although the physical significance is

exaggerated by scale effects (I to 4 K in 300 K).

The measured root-mean-square (RMS) velocity fluctuation profiles shown

in figures 5.11 and 5.12 reveal the structure of the turbulence occurring in

the test section. From figure 5.11, it may be observed that when the flow is

negative, the centerline turbulence is considerably greater than that

occurring when the flow is positive. This shows the extent to which

turbulence is advected down the tube in the flow direction. In the positive

flow direction, the 609 mm probe location is towards the tube entrance where

the turbulence is nominally small by design. Hence the centerllne fluctuation

is smaller than that occurring during negative flow when the measurement

location is toward the test section exit. Concomitantly, figure 5.12 shows

that the centerllne velocity fluctuation is largely independent of flow

direction since the measurements in this case are made at the test section

midpoint; the advected turbulence is thus the same regardless of the flow

direction. It is also noteworthy that the largest fluctuations occur close to

the boundary layer interface in all cases and, further, that the magnitude of

these fluctuations is largely unaffected by flow direction (figure 5.10).

5.4.3 Comparison of System Results at 33,5 rpm

A comparison of the bulk velocity profiles at a rig speed of 33.5 rpm is

shown in figure 5.13. The piston leakage effects observed in this case are

different from those observed at 11.3 rpm (figure 5.2) since no net leakage is

apparent; there may even be a net mass gain. Figures 5.16 and 5.17 reveal

pressure variations about the ambient pressure of 0.98274 bars (as do figures

5.6 and 5.7 at 11.3 rpm). Hence, a possible mechanism for the absence of net

cyclic leakage at 33.5 rpm is that pressure differential driven leakage across

the piston in one flow direction is canceled by mass gain when the flow

reverses. However, this is not a totally satisfactory explanation in light of

figures 5.6 and 5.7 (reversing pressure gradient with net leakage (figure

5.3)). A more probable hypothesis is that at 33.5 rpm, the period during

which leakage flow exists is significantly smaller than that at 11.3 rpm. It

may also be true that at higher speeds, the piston seals function better as a

result of increased seal temperatures caused by greater friction. The net

conclusion, therefore, is that piston leakage is an important boundary

condition for the test section simulation and it requires more sophisticated

experimental and modelling attention.

Ignoring the irregularity in the experimental bulk velocity profiles

alluded to earlier (particularly at about 122°), the predicted and

experimental bulk velocity profiles of figure 5.13 are generally in phase.

The phase agreement of the one-dimensional profile is better than that of the

two-dimensional profile, which may be ascribed to differences in dissipation
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modelling. As noted above, the pseudo-steady-state friction factor based

calculation method used in the one-dlmenslonal code produces more dissipation

than the two-dimenslonal code. The reduction in simulated dissipation at 33.5

rpm (peak Reynolds numbers greater than 131,000) caused by neglecting

turbulence in the two-dlmenslonal model is thus manifest on a system basis, a

manifestation absent at 11.3 rpm (see figures 5.2 and 5.3).

The system axial velocity profiles depicted in figures 5.14 and 5.15 are

identical in shape; the reduction in axial dlscretisatlon is apparent in the

profile generated by the two-dlmensional code. Comparing these figures with

those generated at 11.3 rpm (figures 5.4 and 5.5), it is evident that the

system axial velocity profile topology is independent of rig speed, which

principally affects the peak flow velocity. This is consistent for an open-

ended system operating at atmospheric conditions.

The system pressure profiles produced by the one- and two-dlmensional

codes at 33.5 rpm shown in figures 5.16 and 5.17 are similar in shape to their

counterparts at 11.3 rpm given by figures 5.6 and 5.7, respectively. The

features of these latter figures are accentuated at 33.5 rpm, particularly in

the two-dimensional case (figure 5.17). The impact of lower bulk mean fluid

temperatures simulated by the two-dimensional code in the test section is

readily apparent. Figure 5.20 reveals a radial temperature difference between

the wall and the centerline exceeding 2 ° compared with .3° at 11.3 rpm. This

is prima facie evidence of the importance of explicitly including turbulence

phenomena in the simulation as well as the garnering of sufficient

experimental heat transfer data to investigate the validity of the two-

dimensional code thermal predictions. The jaggedness of figure 5.17 compared

with its one-dimensional counterpart in figure 5.16 is notable since the

jaggedness is more pronounced than that occurring at 11.3 rpm (figure 5.7).

The observed pressure perturbations are a direct result of the temperature

striations shown in figures 5.18 and 5.19 (which again are significantly

greater than at 11.3 rpm as reflected by figures 5.8 and 5.9). This is

largely ascribable to the increased turbulence level, which produces peak RMS

velocity fluctuations of 5.6 m/s at 33.5 rpm (figure 5.21) compared with only

1.6 m/s at 11.3 rpm.

Ignoring the unfiltered turbulence effects, further comparison of

figures 5.18 and 5.19 shows that the basic temperature profile of the rig at

33.5 rpm is more complex and less isothermal than at 11.3 rpm. A comparison

of figures 5.8 and 5.18 (one-dimensional predictions) shows that the flow is

not nearly as isothermal over the test section at 33.5 rpm as it is at 11.3

rpm. Of particular note is the relatively large drop in temperature between

the heat exchangers and the test section. Part of this temperature gradient

occurs as a result of the flow acceleratlon/deceleratlon in the nozzles where

the reversible thermal/mechanical energy transfer (vdp) is greatest (see

figures 5.16 and 5.17). This emphasizes the importance of generating accurate

boundary condition data for any two-dimensional simulation of the test

section. It also suggests that the rig instrumentation should be upgraded to

include as complete a definition of transient test section boundary conditions
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as possible. This is extremely important when attempting to apply the rig
test data to actual Stlrling hardware, which generally has very different
heater and cooler tube boundary conditions than those of the rig.
Furthermore, it is important to ascertain the influence of boundary conditions
on the test data since, particularly at elevated rig speeds, boundary
condition effects may overwhelm the physical similarity between the rig and
Stirling machine heat exchangers.

At 33.5 rpm, the radial temperature profile of figure 5.20 is comparable
in shape to that at 11.3 rpm (figure 5.10). Other than the radial temperature
difference noted above, careful inspection shows figure 5.10 (at 11.3 rpm) to
have irregularities at the points of flow reversal (0° and 180°, figure 5.5)
which are absent at 33.5 rpm. The reasons for this are not clear and require
further investigation.

Manyof the features of the RMS velocity fluctuation profile measured at

11.3 rpm (figure 5.12) are evident at 33.5 rpm in figure 5.21. The centerline

fluctuations appear to be relatively smaller in magnitude at 33.5 rpm while

the degree of irregularity toward the tube wall apparently is not much

affected by the rig speed. The monotonic relationship between rig speed and

peak RMS fluctuation is also evident; a threefold increase in rig speed

produces a peak RMS velocity fluctuation ratio of 3.5. This may prove useful

in devising better friction factor and heat transfer factor correlations for
use in one-dimensional simulations.

5.4.4 Comparison of Test Section Results at ii,3 rpm

Cyclic perspectives on the simulated and measured radial profiles of

mean axial velocity at 11.3 rpm and at the center of the test section (probe

position of 1304 mm) are given in figures 5.22 and 5.23. The absence of

negative velocities in figure 5.22 is a result of hot wire anemometry yielding

data that have no flow direction discrimination. Clearly the simulated and

experimental profiles have different shapes, with the experimental profile

being more rounded. As noted for figures 5.2 and 5.3, the peak velocities

simulated and measured are not dissimilar, their difference being related to

piston leakage effects. Mechanically induced flow irregularities are also

apparent in figure 5.22 (as discussed previously). Of particular note in

figure 5.23 is the slight occurrence of positive and negative flows (the "S"

shape velocity profile) existing at the flow reversal points of 0 and 180 °

(visible at 0 ° and 360°). Bearing in mind the absolute nature of the

experimental data, the same effect is dlscernable in figure 5.22 at 360 ° where

the absolute value of the velocity is greater toward the tube wall than at the

centerline, which is not usually the case.

A better comparison of the shape of the radial velocity profiles is

depicted z_ figures 5.24 and 5.25 which are superimposed in figure 5.26. At

210 ° to 275 ° , the simulated profiles are much flatter than their experimental

counterparts although their terminating values at the tube centerline and at

about 18.5 mm are comparable. At 200", both experimental and simulated

profiles have a negative radial gradient in the core flow region although the

simulated gradient negativity is more pronounced.
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SIMULATED RADIAL PROFILES OF MEAN AXIAL VELOCITY
RIG SPEED: 11.3 rpm PROBE POSITION: 1304 mm

200 deg 210.7 deg 225 (leg 250 deg 275 deg
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Figure 5.24
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EXPERIMENTAL RADIAL PROFILES OF MEAN AXIAL VELOCITY
RIG SPEED: 11.3rpm PROBE POSITION: 1304mm
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An alternate explanation for the disagreement between the shape of the

simulated and measured profiles could be sought in a mismatch of experimental

and simulated test section boundary conditions. In other words, if the

experimental flow at the test section / nozzle interface contains an embedded

radial gradient of axial velocity, then the roundness of the experimental

profiles could be a distorted version of the embedded boundary gradient. The

absence of an embedded boundary gradient in the simulation (slab flow

conditions are assumed at the test section entrance) would account for the

observed discrepancy. However, figures 5.29 and 5.30 do not substantiate this

hypothesis since the velocity profiles at a probe position of 609 mm from the

entrance are much flatter than those at the test section midpoint. This

behavior is consistent with the existence of slab flow at the test section

entrance under experimental conditions. Thus it appears necessary to seek an

explanation for the observed discrepancies in terms of other factors such as

the exclusion of turbulence from the simulation.

5.4.5 Comparison of Test Section Results at 33,5 rpm

The difference in shape noted for figures 5.22 and 5.23 at 11.3 rpm is

more pronounced at 33.5 rpm as shown by figures 5.31 and 5.32. In this case,

the roundness of the experimental radial profile of mean axial velocity

(figure 5.31) is sharply contrasted against figure 5.32, whose flatness at

33.5 rpm is more marked than that of figure 5.23 at 11.3 rpm, particularly at

the boundary layer interface. The reversed boundary flow (relative to the

direction of the flow core) at 0 and 360 ° is less than that revealed by

figures 5.22 and 5.23; indeed, its existence in figure 5.31 is arguable.

The shapes of the radial profiles at discrete crank angles are shown

separately for the simulated and experimental data in figures 5.33 and 5.34

respectively and together in figure 5.35. The reduction in roundness of the

simulated profiles at 33.5 rpm compared with those at 11.3 rpm (figure 5.24)

is evident. Figure 5.35 shows that the turbulence-induced radial flow effects

are more apparent at 33.5 rpm than at 11.3 rpm. This is consistent with an

increase in peak measured RMS fluctuation from 1.6 m/s at 11.3 rpm to 5.6 m/s

at 33.5 rpm. The simulated peak radial flow velocity shown in figure 5.36 is

still small at -0.011 m/s; two orders of magnitude smaller than the turbulence

fluctuations. Thus momentum conservation dictates that including higher

negative radial velocities in the simulation would coerce the concurrence of

figures 5.33 and 5.34. In this regard, it may also be noted that the

volumetric flow rates produced by integrating the experimental and simulated

axial velocity profiles with respect to radius would be similar (allowing for
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SIMULATED RADIAL PROFILES OF MEAN AXIAL VELOCITY
RIG SPEED: 33.5 rpm PROBE POSITION:1304 mm
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piston leakage effects) as expected from the bulk velocity profiles shownin
figure 5.13; in other words, the experimental and simulated results are
consistent on a mass conservation basis.

The absence of any discernable radial pressure gradient in figure 5.37
is in accordance with the smallness of the radial velocities displayed by
figure 5.36. The behavior revealed by figure 5.36 (as well as by figure 5.27
at 11.3 rpm) does not appear to be in conflict with the experimental data,
namely, a radial flow reversal corresponding with the axial flow reversal at
0° and 180° (see figures 5.23 and 5.32). The extent to which this radial flow
reversal is important in the lamlnar/turbulent flow transition process should
be an important ingredient of future simulation and experimental
investigations.

5.4.6 Simulated Cyclic Performance

An overview of the simulated cyclic performance of the test rig is given

by table 5.3. The 'net kinetic energy conversion' is the sum of the

irreversible kinetic/thermal energy conversion (or dissipation) and the

isentropic heat generation rate (or v-VP 'work'). A positive value indicates

that over the cycle, there is a net conversion of kinetic into thermal energy;

a negative value indicates the reverse. Negative 'indicated work done'

denotes that work is done on the fluid by the piston.

Table 5.3 Base case cyclic energy balances.

Engine Simul. Net Heat Net Heat Net Kinetic Indicated Energy

Speed Code Input Output Energy Con- Work Done Balance

(rpm) (J) (J) version(J) (J) Error(%)

11.3

l-d 3.3101 23.1855 -0.0165 -19.8918 0.000065

2-d 1.2399 13.5442 3.887 -8.4173 0.000241

33.5

l-d 20.8935 155.8568 -0.0259 -134.9901 0.000534

2-d 6.5336 45.4136 -1.4571 -40.332 0.006644

The magnitude of the difference in dissipation modelled by the one- and two-

dimensional codes is manifested by the large difference in indicated work

predictions. At 11.3 rpm, the one-dimenslonal code predicts an indicated work

input 2.4 times greater than the two-dlmenslonal code, while at 33.5 rpm, the

one-dimensional prediction is 3.3 times greater. The net heat output required

to balance the indicated work input follows this trend while the net heat

input is adjusted to close the energy balance. The two-dlmenslonal net

kinetic energy conversion values are large relative to their one-dimenslonal

counterparts. This also is consistent with the under-prediction of
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dissipation in the two-dimensional code owing to the neglect of turbulence in

the test section. All the energy balance errors are less than .01% at worst

with the worst error being achieved after 3 cycles from rest.

5.4.7 Closure

The salient conclusion to be drawn from the comparison of the baseline

simulated and experimental results is that the two-dlmenslonal simulation

should include an adequate turbulence model in order to match the experimental

data. The major physical impact of the measured turbulence appears to be a

large increase in the radial advection fluxes in the test section compared

with those generated under assumed laminar flow conditions. The effectiveness

of the 'turbulence model' used in the one-dimensional code (that is, the

pseudo-steady-state friction factor correlation) in replicating experimental

conditions cannot be Judged definitively due to the absence of adequate

measurements. At the very least, such measurements should include ambient

pressure and temperature as well as a transient pressure drop profile across

the test section.

However, the comparisons performed appear to confirm that the use of the

pseudo-steady-state friction factor approach to dissipation modelling is at

least an approximation that produces the correct qualitative trends in the

simulated results. The importance of correct boundary condition modelling as

an integral part of the two-dimensional test section simulation is also

highlighted. Hence, it is doubtful whether generic two-dlmensional codes that

just simulate the test section can be expected to yield good quantitative

answers which may be generalised to Stirling machine heat exchangers with

arbitrarily complex boundary conditions.

In terms of practical design application, these results point to the

continued efficacy of a one-dlmensional system analysis of Stirling machine

fluid dynamics. The simulation/experimental result comparison shows that

there is promise for modifying the pseudo-steady-state approach to reflect

adequately the turbulence effects which, based on these data, seem to be a

major cause of some of the anomalies in one-dimensional simulation so often

cited in the literature.

5_5 COMPARISON CASE S%MULATION APPLICATION

The METR experimental parameters chosen for the development of the

turbulence model are selected to represent the heater of the Space Power

Demonstrator Engine (SPDE) operating at relatively high power. These

parameters are shown in table 5.4.
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Table 5.4 Comparison case experimental parameters.

Operating point: MTI Experimental test no. 42 of 9/11/86

Experimental indicated power: 17.9 kW

Max. Reynolds number within the heater over a cycle: 13,985.3

Maximum Valensl number within the heater over a cycle: 91.3

Minimum Valensi number within the heater over a cycle: 71.7

Maximum heater bulk Reynolds number over a cycle: 11,706.4

Maximum heater bulk Valensi number over a cycle: 86.9

Minimum heater bulk Valensl number over a cycle: 72.2

where:

(NRe)bulk - 4 Z(gV) / Z(.V)

(NVa)bul k - .5_fd 2 Z(M) / Z(#V)

(5.1)

(5.2)

Two sets of Reynolds and Valensi numbers are defined. One set

corresponds to the maxima and minima occurring within the heater while the

second set defines 'bulk' values, namely those obtained from volume averages

over the entire heater (equations (5.1) and (5.2)). In terms of the METR

operating philosophy, the rig parameters were chosen to reflect the bulk

Reynolds and Valensi numbers with the latter taken as the mean of the minimum

and maximum values.

The adjusted rig parameters for the comparison case are noted in table

5.5. The chief differences from the baseline case occur in the expansion

space, conical transition piece, and flexible joint parameters. The test

section length is reduced by 323 mm and a 'transition length' within the test

section has been defined to contain the transition from a one- to a two-

dimensional spatial discretisation. Previously, this transition was contained

within the nozzle and hence occurred under axially varying flow area

conditions. Placing the transition in the constant diameter test section is

analytically preferable although no discernable numerical differences can be

detected.

5.6 THE TURBULENCE MODEL

The only difference between the equation set used in the baseline and

comparison cases is that the Reynolds stress tensor and turbulent heat flux

terms have been reintroduced into the momentum and thermal energy equations

respectively (equations (2.42.1) and (2.43.1)).

The six restrictions constituting the turbulence model are listed in

section 2.3. However, of principal concern in this discussion is the

selection of a model fulfilling the stipulation of restriction V. Currently,

the relevant turbulence terms in the momentum and thermal energy equations are

represented by pseudo-steady-state friction factor and heat transfer
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coefficient correlations. The purpose here, therefore, is to replace these

correlations with a more fundamental turbulence model.

The selection of the turbulence model is based upon the following

criteria:

ao General coordinate and dimensional invariance.

Essentially, this means that the form of the model should be

independent of the spatial dlscretisation scheme and system of

units used. Casting the model in tensor form and using

dimensionless constants meets this criterion.

b. Full realizability (Lu78).

In particular, this requires that all the components of the

turbulent kinetic energy are non-negative for any possible flow

condition. Further, full realizabillty means that the turbulence

model must be capable of evolving positive turbulent kinetic

energy from a rest state (that is, zero momentum) without the

necessity of defining an artificial rest-state positive turbulence

field. This is particularly important under oscillating flow

conditions during which repeated laminar-to-turbulent transitions

occur, since under these circumstances, numerically lll-

conditioned models show steady-state solutions that are dependent

on the initial conditions. However, physical reallzabillty alone

is insufficient in a numerical context since models that are

physically realizable can still produce negative turbulent kinetic

energies due to the errors inherent in a discrete numerical

process, particularly in lamlnar-to-turbulent transitions. Thus

the model must also be numerically realizable in the sense that

its numerical or discrete analog will also yield non-negative

turbulence kinetic energies under all flow conditions.

C. Material frame indifference.

This requires that the form of the Reynolds stress term (equation

(2.42.2)) in a two-dimensional turbulence field be the same 'in

all non-lnertlal frames of reference which can undergo arbitrary

tlme-dependent rotations and translations relative to an inertial

framing' (Sp87). Basically, this implies that if the Reynolds

stress is dependent upon the mean velocity gradient tensor Vv,
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Table 5.5 METR comparison simulation input parameter set.

Expansion Space

Piston stroke(mm)

Piston end cap thickness(mm)

Piston end cap taper(deg)

Clearance length at piston TDC(mm)

Cylinder diameter(mm)

An_ular velocity_rpm_
Conical Transition Piece

Axial length(mm)

Cylinder mating diameter(m_m)

Flexible joint mating diameter(mm)
# of control volumes

Flexible Joint

Cylinder side axial length(mm)

Cylinder side diameter(mm)

Cylinder side # of control volumes

Nozzle side axial length(mm)

Nozzle side diameter(m_m)

Nozzle side # of control volumes

S_acer

Axial length(mm)

Cylinder side flange length(mm)

Nozzle side flange length(mm)

Diameter(mm)

Cylinder side flange diameter(mm)

Nozzle side flange diameter(mm)

# of control volumes

Heat Exchanger

Axial length(mm)

Cylinder side flange length(mm)

Nozzle side flange length(mm)

Casing diameter(mm)

Hydraulic diameter(mm)
Flow area ratio

# of control volumes

Nozzle

Size (1-small, 2-1arge)
# of half-nozzle control vols

Test Section

External diameter(mm)

Axial length(mm)

Transition length(diameters)

# of axial control volumes (4 minimum)

# of radial control volumes (2 minimum)

Wall conductivity(W/m-K)

Wall density(kg/m^3)

Wall specific heat capacity(J/k_-K_

Working Fluid

Workin K fluid (i-Air, 2-Helium, 3-Hydrogen):

: 251.46

: 0.

: 90.

: 67.9

: 127.

33_75

: 219 .i

: 127.0

: 127.0

3

: 15.875

: 152.4

: 2

: 73.025

: 139.7

: 2

: 63 5

: 3 175

: 6 35

: 139 7

: 127 0

: 127 0

; 3

: 50 8

: 9 525

: 12 7

: 127 0

: 2 1824

: 556

4

: 1

: 3

: 50.8

: 2286.0

: 2

: Ii (2-d)

: 8

: 1.0211

: 2466.84

: 753.624
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then Vv must always be non-zero in a two-dimenslonal turbulence

field and a transformation tensor _ must exist such that:

V'v* - Vv + dual

where * indicates the target non-inertial frame of reference.

A fourth (although non-rlgorous) selection criterion is that the model

should be amenable to the induction of and the response to temporal

discontinuities. This arises because of the nature of the turbulence

triggering occurring in oscillating flows. An example of such a discontinuity

is evident in figure 5.38 (Se88), which is the closest test point in Seume's

data set to the conditions of table 5.4. The abrupt onset of turbulence at

255 ° and to a lesser extent at about 20 ° as well as the decay of turbulence at

303 ° point to discontinuous phenomena. In this case, Seume postulates that

the turbulence is triggered advectively and decays rapidly after passage of a

turbulent fluid slug. In contrast, Hino et al. (HK83) concluded from their

oscillating flow experimental data taken in a rectangular duct that turbulence

is generated 'explosively' at the onset of flow deceleration, which suggests

that local fluid acceleration is the trigger mechanism. Hence in this case as

well, the turbulence triggering is a discontinuous event.

The approach decided upon for implementing these empirically observed

discontinuities in the model is via a foldback function formulation. This

formulation has the advantage of introducing and controlling discontinuities

by continuously changing selected parameters, an ideal characteristic for a

numerical implementation. An example of a simple foldback function is given

in figures 5.39 to 5.42. Consider a parabolic function of the form:

y- ax 2 + bx _ f(x) (5.3)

Hence, initially if:

Yl - aXO 2 + bXo -- f(x0) (5.4.1)

then, if Yz is folded back into f(x), that is:

Y2 " f(Yz) " aYz2 + bYl (5.4.2)

equations (5.4) represent a foldback function. This function is depicted in

figure 5.39 where the dashed line represents the foldback process as the

output of the function is reflected by the 45 ° llne back into the function

input. Hence if a - -i and b - 3, the function is 'ordered' since the

solution converges to a unique value. Setting b - 4 produces the effect of
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figure 5.40, where the solution converges to a 'stable' condition by tracing a

closed coordinate path. Increasing b to 5 yields a 'transition' condition in

which the solution gradually degenerates into chaos (figure 5.41). Finally,

figure 5.42 shows a fully chaotic condition when a - -.5 . Hence a continuous

change in a and/or b produces a discontinuous change in the stability of the

foldback function so that the chaos 'evolves' in a fashion simulating that

observed empirically without creating numerical anomalies.

The foldback function methodology invoked in this analysis was selected

initially because it is ideally suited to the iterative structure of the

numerical algorithm used (section 2.5), which strongly motivated its initial

selection. Yet it must be emphasized that other classes of 'chaos' models

(such as fractal methods) are potentially useful if not superior for modelling

laminar-to-turbulent (and turbulent-to-laminar) transitions. Time

constraints, however, did not permit the investigation of alternates to the

foldback function methodology chosen.

5.6.1 Selection of the Turbulence Model

Consider the Reynolds or turbulent shear stress term in the momentum

equation (2.42.1):

[v]T(t) - -[v]g' [v]v' (5.5)

In terms of the rigorous discrete volume analysis used as the basis of the

simulation (Go87) together with the six restrictions defining the turbulence

model, the ideal choice of turbulence model would be a functional form

yielding the correlation on the right-hand side (RHS) of equation (5.5)

directly. By a manipulation of the Navler-Stokes equations (Hi75), the exact

differential transport equations for the Reynolds stresses may be expressed as

(HL72):

D(glv))/Dt - -(vjg_ avt/ax k + glv_ 8vj/OXk)
generation

-21_(Sv'i/SXk)(Sv_j/ax k) + p' (av'i/Sx j + av_j/Sx i)
dissipation redistribution

(5.6)

-a [glvjvk - .{a(vlvj)/ax k + v' (_jkvl + s_k_ 3) ]/ax k
diffusion

where the subscripts i, j, and k imply the usual tensor summations. In its

exact form, equation (5.6) is not soluble since the RHS contains a number of

new correlations (for example, in the dissipation and diffusion terms) for

which closed form determinations must be found, that is, the ubiquitous
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closure problem. Typically, these closures are achieved (for example, see

HL72, LR75, GE76) by specifying the unknown correlations in terms of algebraic

functions of known correlations, the turbulence kinetic energy (k), and the

rate of dissipation of turbulence kinetic energy (c), which are defined as

follows:

k - 0.5(v_) 2 (5.7.1)

_I  (av /axg) (5.7.2)

Employing these techniques expands equation (5.6) into a set of six equations

for the two-dlmenslonal field simulated in the METR test section, namely, four

transport equations for the Reynolds stresses and two for k and _,

respectively.

However, it is also posslble to determine the Reynolds stresses directly

from a k-_ equation set using Bousslnesq's eddy-vlscoslty concept, which

assumes that the turbulent shear stresses are proportional to the mean-

velocity gradients (analogous to the viscous stresses in laminar flows) or:

,¢t?,j _ _(t)(a-j_i/ax J + av-5/axi) 2k6ij/3

w

The turbulent viscosity _(t) can be obtained from the Kolmogorov-Prandtl

expression (Ro84) :

(5.8)

_(t) _ pK k2/, (5.9)

Equation (5.8), however, suffers from a major disadvantage because it yields

isotropic principal Reynolds stresses, that is:

_ J3
(5.10)

This has the consequence of erroneously predicting unl-dlrectlonal flows in

non-clrcular ducts as well as producing substantial inaccuracies in the

calculation of separated turbulent flows (such as that occurring over a

backward facing step). Speziale (Sp87) has proposed solving this problem by

replacing the linear form of equation (5[8) with a non-llnear, quadratic form.

He has solved several test problems successfully using this approach.

Therefore, in the context of the METR analysis, since a closure model of

the two-parameter or k-_ type is in any event necessary for implementing the

desirable full Reynolds stress model, in terms of the imposed temporal and
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fiscal constraints, it was judged prudent to limit the turbulence model in the

METR simulation to such a two-parameter model, at least as a first step.

Equations (5.8) and (5.9) are thus used to generate the necessary Reynolds

stresses. Clearly, the limitations of equation (5.8) must be acknowledged,

but, fortunately, they are of second order significance for the constant area,

axi-symmetric METR test section to which the turbulence model is being applied

in two dimensions. Hopefully, the experience gained with the k-_ class of

two-parameter turbulence model as applied to oscillating flows will provide a

basis for future work leading to the implementation of a full Reynolds stress

model.

5.6.2 The k-_ Turbulence Model

Examination of the classic k-( turbulent model provides a convenient

starting point for the model selection process. A general form of the k-_

model in common usage is referred to as the 'low Reynolds number' version,

which is purportedly valid throughout the laminar, semi-laminar, and turbulent

regions of the flow (LS74). Usually, these characteristics are attributed to

the model under steady-state flow conditions. It is not clear from the

literature whether the model is intrinsically capable of handling general

laminar-to-turbulent transitions (including those where the fluid is

accelerated from rest), although local turbulent-to-laminar transitions have

been modelled (JL72). The general form of the k-_ model also includes wall

correction terms not only to account for near-wall effects but also to allow

setting ( - 0 at the wall (JL72). In terms, of the turbulence model

restrictions, a tensor notation version of the low Reynolds number k-_ model

suitable for compressible fluids has been adapted fro_ LS74 and is given by

the following differential transport equations:

pDk/Dt - V. ( (#-+Kz_(t))Vk} + 2#(t)(D:Vv)

diffusion production

2p (VkZ/2) 2 p_ (5. Ii. I)

wall correction dissipation

pD_/Dt - V. { (_+K_(t))V_) + Ksc2p(t)(D:Vv)/k

diffusion production

- K,p+2/k + 2_(t)(Vl.VV)z

destruction wall correction

(5.11.2)

These equations share a common form having diffusion, production,

destruction (or dissipation), and wall correction terms on the RHS. Of

particular note is the form of the production terms which are defined by the

scalar prod',ct of the deformation tensor (equation 5.11.4) and the velocity

gradient. As this product is non-negatlve under all flow conditions, the

creation or evolution of k and _ is dependent on the value of _(t), itself a

function of k and _ (equation 5.11.7). Hence, the system of equations is
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indeterminate even though it is closed. The balance of the equations filling

out the complete model implementation are given by:

T ct) - 2_(t)D - 2pkI/3 (5.11.3)

- 0.5(v; + (v;)_} (5.n.4)

-gi'O - (5.11.5)

(5.11.6)

(5.n.7)

K I - i K 2 - I/I. 3

_4 - 1.92(I - 0.3exp(-N_ 2))

Ks - 0.09exp{-2.5/(l + N_/50}

K3 - 1.44

(5.11.8)

(5.11.9)

Equation (5.11.6) defines the method by which turbulent enthalpy transport

(equation (2.35)) is determined from the model while the constants K4 and K 5

, are dependent on the turbulent Reynolds number (equation (5.11.9)).

Examination of equations (5.11.1) and (5.11.2) reveals that the k-¢

model satisfies the first selection criterion (general coordinate and

dimensional invarlance) while equation (5.11.3) satisfies the third criterion

(material frame indifference). However, the second criterion (full

realizability) is not satisfied.

First, equations (5.11.7) and (5.11.9) are indeterminate if E - 0, and

equation (5.11.2) is indeterminate if k - 0. Hence the equations are

intrinsically incapable of evolving a positive turbulence while either k or

is zero. The usual methodology for dealing with this situation is simply to

pre-initialise the k and ¢ fields to values that are compatible with the

realizability criterion; namely, the source terms in equations (5.11.1) and

(5.11.2) should be positive, or:

(2_(t)(D:Vv) " 2_(VkII_)2 " P£)inft > 0 (5.12.1)
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{Ksc2_Ct)(D:Vv) - K4p_2/k + 2#-_(t)(Vi.Vv)2}init > 0 (5.12.2)

In this sense, the k-_ model may be termed 'weakly' realizable.

However, in oscillating flows where k and c can be zero in the flow core

as well as in the laminar boundary layers, such initialisation techniques

mitigate against the prediction of strict laminar-to-turbulent transitions

(that is, from k - 0 to k > O) by the model per se. Furthermore, from a

numerical perspective, there does not appear to be a physically credible way

of ensuring that the k source terms (LHS of equations (5.12.1)) will always

interact with the transport terms in such a way as to unconditionally produce

positive values of k when considering the model from a full reallzabillty

perspective.

As a result of its system indeterminacy, the k-_ model is suitable for

implementation as a foldback function, so fulfilling the fourth selection

criterion. This may be readily achieved by casting equations (5.11.1) and

(5.11.2) in implicit or advanced time form, thus rendering them naturally

amenable to iterative solution. There are then a number of possibilities

(notably in the generation terms) for introducing foldback parameters for

continuously controlling the triggering and evolution of the turbulence. This

capability opened the possibility that full realizabillty could be achieved

for the model when cast in foldback function form, thus warranting a numerical

investigation.

After much tedious experimentation, it eventually became clear that the

reallzabillty problem proved to be the main detractor in obtaining anything

resembling the type of laminar-to-turbulent transition observed empirically by

Seume as shown in figure 5.38. The model could be made to 'work', that is,

portray discontinuous transitions, by treating the flow as being 'turbulent'

throughout the cycle (that is, k and _ > 0 for all t) simply by setting _(t) _

0 when N < N • . (taken to be 2,000) Further difficulties were
Re Re(transltlon) , _ •

encountered wlthfn the coarse grid framework or the discrete volume analysis

(eight control volumes radially) as a result of the wall correction terms in

equations (5.11.1) and (5.11.2). The spatial dlscretisation near the wall

strongly determines the influence of these terms, thus violating the

scalability inherent in the discrete volume analysis. Alternate wall

correction procedures such as the logarithmic wall function method (LS74) were

_Iso tested with mixed results. Such empirical procedures by definition are

not spatially scalable or generalized.

These experiences prompted a search of the literature for alternate two-

parameter turbulence models which could meet the full realizability criterion

and also avoid the necessity of special wall functions. Accurate prediction

of steady-, tare turbulence or turbulent-to-laminar transition phenomena alone

(commonly used for validation) was not regarded as a qualifying criterion.
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5.6.3 The Wilcox k-_ Turbulence model

Wilcox (Wi88) has proposed a k-_ two-parameter turbulence model which,

when implemented in a foldback function, nominally comes much closer than the

k-_ model to achieving full realizability (which appears to be necessary for

modelling discontinuous transitions). Although still not possessing complete

system determinacy, the Wilcox k-_ model does appear to offer a better

opportunity of meeting the full realizability criterion than most of the two-

parameter models reported (Ro84, TL72). It may be noted that Spalding also

published a report on the k-_ model (Sp72), but it is not known to what extent

the Spalding k-_ model differs from the Wilcox k-_ model. _ is referred to as

the specific dissipation rate and is related to _ via:

- _/Kk (5.13)

After a series of numerical applications, Wilcox claims that the k-_

model is 'much more accurate than comparable two-equation models' although

such a claim is, of course, disputable. The Wilcox k-_ model does not include

any wall correction terms since the model can be integrated through the

viscous sub-layer at the boundary. Hence these characteristics make the k-_

model an ideal candidate for implementation in a discrete volume analysis.

In terms of the turbulence model restrictions, a tensor notation version

of the k-_ model given in Wi88 may be expressed by the following differential

transport equations:

pDk/Dr - V. { (_+K_(t))Vk} + (T(t):Vv) - K1p_k

diffusion production dissipation

(5.14. i)

pD_/Dt - V-{(_+K3_(t))Vm} + Ks_(T(t ):vv)Ik - K6Pm 2

diffusion productlo_ destruction

(5.14.2)

These equations are similar in form to their counterparts in the k-_ model

(equations (5.11.1) and (5.11.2)) except that the wall correction terms are

absent. Another notable difference is that the production terms are expressed

in terms of the Reynolds stress tensor rather than the deformation tensor. By

an argument similar to that invoked previously, the k-_ equation system is

also indeterminate in explicit form. The balance of the equations and

constants comprising the complete model are given by:

T (t) - 2_Ct){D - (_)I/3} 2pkI/3 (5.14.3)

- 0.5{v; + (v;)T] (5.14.4)
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, , _ _t)
-&ivj _j

t_(t) - K4pk/_

(5.14.5)

(5.14.6)

&'r' #(<) (aT/axi)/N_i - (5.14.7)

K I - 0.09 K2 - 0.5 K 3 - 0.5;

K4 - 1 K 5 - 5/9 K e - 3/40

(5.14.8)

In this case, none of the constants show a turbulent Reynolds number

dependence. However, the methodology employed by Wilcox to derive the model

constants (equation 5.14.8) is open to question since it relies partly on

numerical evaluation (as opposed to being entirely based on experimental

data). This has particular significance in the light of the scalability

requirements of a discrete volume application.

The foldback function formulation of the k-_ model is achieved via the

following manipulation. Substituting equation (5.14.6) into equation (5.14.3)

yields:

T (t) - 2K4pk(D - (Vv)I/3}/_) -. 2pkI/3 (5.15)

Substituting equation (5.15) into the production term of equation (5.14.2)

produces:

p-Dw/Dt V. {(_+K3_(t))V_ Ke_ 2 2_K5
r -- -- -- 1

- - + [ [K,{D-(Vv)I/3) - wI/3]:Vv J (5.16)

Casting equation (5.16) into advanced time (or implicit) form by discretislng

the LHS and rearranging the source (production and destruction) terms yields:

p_[i/At + {(2KsI/3):Vv} + K6_ ] V-((;+K3#(t))V_}

- p_'/At + 2p-K4Ks[{D - (V;)I/3}:V;] (5.17)

Equation (5.17) is fully realizable. It is also determinate if in

equation (5.14.6):
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- 0 _ _(t) _ 0 (5.18)

Notice then that as long as the velocity gradient Vv is non-zero, equation

(5.18) will evolve positive _ even when w - 0 regardless of the value of k.

This implies a much different physical description of turbulence than the k-c

model, which will only evolve positive e when k > 0. A determination of which

model is physically 'correct' under oscillating flow conditions (particularly

during laminar-to-turbulent transitions) requires a level of analysis beyond

the scope of this project and a very detailed experimental oscillating flow

data base, which is not yet available (at least from the METR). Nevertheless,

Wilcox has demonstrated that under steady-state conditions and during

turbulent-to-lamlnar transitions, the k-_ model is at least as physically

'correct' as the k-e model. Hence for the sake of expediency, it will be

assumed here that the physical implications of equation (5.17) are valid on

the basis that the production term of equation (5.17) is a logical consequence

of equations (5.14).

Casting equation (5.14.1) in implicit form yields:

pk(1/At + KI_0 ) V*((;+/(2_(t))vk} -- pk4/At ÷ (T(t):_) (5.19)

Equation (5.19) is also realizable (not as fully as equation (5.17) though)

but it still suffers from the system indeterminacy of the k-_ model in that

positive k can only be evolved if k > O. Hence some additional empiricism is

necessary to trigger the creation of turbulence.

5.6.4 k-_ Model Enhancement and Foldback Function Parameters

Dropping the implicit notation for the sake of clarity and transforming

equations (5.17) and (5.19) into generalised discrete volume form (see chapter

2) yields:

f

d([v]k H(s))/dt - I- [vn]_{ ([tvn;g-ltvn]P Vn(s))''n}dA
JAn(s)

÷
(5)

(5.20)

+ V(s){K2( vjT(t):VEtvl - /Q EtvjP [vlk}

and:
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d(tv]_ _cs_)/dt - Ev,p_((Etv.lg-C%,iP Vn(s_)'-n}a%

JAn(s)
(5.21)

+ KsKsM(s ) [ 2 { [tv]D- (V. [tvlV- [v]_) I/3 } : V[tv]V]

- K7M(s ) [v]_z

for the k and _ transport equations, respectively. Note that the constants K

in these integral equations do not correspond exactly to those used in the

equations of section 5.6.2.

The remaining equations and constants constituting the implemented

version of the k-w model will be listed first and discussed thereafter. Two

turbulence triggering modes are investigated and are distinguished by

referring to them as the 'discontinuous' and 'continuous' modes. The first

block of equations and constants are common to both triggering modes and are

given by:

tv]P (t) - K_KIo [tvlP Iv] k / iv] _ (5.22.1)

K5 - {i exp (-r + / 26.5)} z (5.22.2)

r+ = ([tv]P [tV]rwall )°'5 (rwall " r) / [tv]_ (5.22.3)

K l - 0.09 K 3 - 1

KB- (3 + 5Ks)/9

(5.22.4)

N_ -[tvl_ cvl-k/Kz {tv]_ {vj_ (5.22.5)

livid- 0.5 {Vttv]V + (V[tv]V) r} (5.22.6)

[v]T (t) = 2tv]_¢t){ [tv]D (V[tv]V)I/3} 2({tv}p [v]k)I/3 (5.22.7)
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[v]_ (_) = K_ [tv]P iv1 k [v3 _' (5.22.8)

A

[vnlq (t) = Cp [v]/a(t)VEtvn]T/N_
(5.22.9)

The second block of equations and constants are differentiated by triggering

mode as follows:

discontinuous: K s - 5[log(l+Ks)^{l+exp(l-Ks)}]/3

continuous: K s = min ( [5[log(l+Ks)^{l+exp(l-Ks)}]/3, I]

(5.23.1)

discontinuous: K s - N_ / (N_)critica 1

continuous: K s - (N_-l)/(N_)critical

(5.23.2)

discontinuous continuous

(N_)critica I - 486

K 2 - i

KlO - 1 I (NRe) _ (NRe)transition

- 0 I (NRe) < (NRe)transition

(N_)critica 1 - 25

K 2 - K s

Kl0 - 1

(5.23.3)

(5.23.4)

(5.23.5)

Equations (5.22) and (5.23) embrace the foldback function parameters and

include enhancements to the Wilcox k-w model as discussed below.

a. Near-wall correction methodology

As alluded to previously, the Wilcox k-_ model includes no near-

wall correction terms. However, in contrast to the coarse radial

discretlsation typifying the discrete volume analysis used, a much finer

spatial discretisation is necessary near the wall to achieve adequate

physical accuracy with the basic model. This requirement substantially

increases the computational cost of implementing a discrete volume

analysis. Inclusion of an appropriate near-wall correction term,

however, enables a much lower computational cost to be achieved while

retaining scalability. Nagano and Hishida (NH87) investigated a range

of existing near-wall correction terms as applied to a k-_ turbulence
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model and proposed an alternative which, they concluded, yields better
performance than the existing methods.

Using the k-_ model, some investigations with both the Jones-

Launder (JL72) and Nagano-Hishida near-wall correction methods were

performed with the latter method yielding better agreement with the test

data at the chosen test point (section 5.5). Hence on this basis, the

Nagano-Hishida method was selected pending the availability of further

experimental data. The model consists of equations (5.22.2) and

(5.22.3) which serve to reduce exponentially the magnitude of the

turbulent viscosity as the wall is approached. A dimensionless distance

(zero at the wall) defined in terms of the wall shear stress is used as

the independent parameter. This ensures that the method is independent

of spatial discretisatlon, so retaining the scalability characteristic

of the discrete volume analysis.

b. Constant modifications

Other than the introduction of K 5 (wall correction term), K 2

(continuous turbulence trigger parameter) and K e (foldback function

parameter), with one exception, the constants are the same as those in

the Wilcox k-_ model. The exception concerns the turbulent diffusion

term constant K z in equation (5.14.1) which Wilcox assigned a value of

0.5 (equation (5.14.8)) based on numerical experiment. When applied to

an oscillating flow, changing this constant to a value of unity (K 3 in

equations (5.20) and (5.22.4)) yielded better agreement with the

experimental data at the test point. Jones and Launder (JL72) and

subsequent workers have also used a value of unity for the constant in

the k equation turbulent diffusion term (equation (5.11.1)).

c. Turbulence triggering

As noted in the discussion of equation (5.19), the k-_ model can

only evolve positive turbulent kinetic energy if k is made positive

independently. In general, it seems that two approaches to introducing

this independence can be considered.

As a first option, the advectlve triggering mechanism postulated

by Seume (Se88) may be used to inject positive k into the two-

dimensional test section of the METR. This is adequate for the general

case provided that such positive k can be generated outside the test

section, that is, in the one-dlmenslonal duct between the test section

and the heat exchangers. Once a positive k thus has been established,

the turbulence evolution may be controlled via a foldback function

parameter such as the turbulent Reynolds number (equation (5.22.5)).

A second, more fundamental, option is based on the local

acceleration triggering postulate of Hino et al. (HK83). Such a

postulate devolves to a triggering model based upon microscopic level

entity (molecules or 'clumps' of molecules) dynamics in which random

cross-stream or turbulence-inducing momentum arises when the microscopic

viscous forces are exceeded by the inertial forces. This mechanism is

depicted on a macroscopic level in contained flows by the usual Reynolds

number transition criterion. Proceeding further, a microscopic entity
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approach also would allow the discontinuous increase in turbulence

observed by Seume (apparently caused by the passage of a turbulent fluid

slug) to be naturally modelled so harmoniously blending Hino et al.'s

and Seume's observations.

The microscopic turbulence triggering mechanism is considered

preferable by the author; however, the project time and budget

constraints mitigated against investigation of this concept. Hence, by

default, it was decided to proceed with the advective triggering

methodology even in the presence of concerns about its physical

credibility.

The advective triggering methodology is implemented by creating a

pseudo-transport equation for k which is used only in the one-

dimensional sections of the METR between the test section and the heat

exchangers. All turbulence is assumed to be extinguished in the

serpentine passages of the heat exchangers. The one-dimensional pseudo-

transport equation for k is given by:

r
d([vlk M(s))/dt - l [vn]k{([tVnlg ° [tVnlP Vn(s)) • -n) dA

JAn(s)

(5.24.1)

if:

then :

iv]k < [tv]Twall / [trip and NRe > 2000

iv]k " [tv]_wa11 / [trip

(5.24.2)

Equation (5.24.1) just reflects advective transport of k while equation

(5.24.2) initialises k to a floor value of the square of the friction

velocity if the Reynolds number is greater than a transition value of

2000. If k is greater than the floor value (irrespective of the

Reynolds number) it retains the value computed using equation (5.24.1).

This approach yields a fully realizable turbulence triggering method

including laminar-to-turbulent transitions from the rest state without

the necessity of any k or w pre-initiallzation.

d. Foldback function implementation

Control of the foldback function is achieved through constants K 2

and K e (equations (5.23.4) and (5.22.4), respectively) together with

their threaded substituent constants.

A stability analysis of the k-_ model showed that the _ production

term in equation (5.21) is an appropriate vehicle for controlling the

stability of the foldback function. In particular, the stability

boundary hypersurface (Go87) for the model can be intersected for a

value of K 6 between 7/9 and 8/9 (all other constants remaining at their
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listed values). If K 6 _ 7/9, the model exhibits chaos increasing in

magnitude until a fully chaotic condition (figure 5.42) is reached for

K B = 3/9. For K 8 _ 8/9, the model exhibits 'ordered' behavior (figure

5.39). Thus, continuous variation of K 6 between 3/9 and 8/9 enables the

k-_ model discontinuously to evolve turbulence in a random fashion.

The continuous variation of K 8 is achieved via f 8 (equation

(5.23.1)), which varies as an inverse exponential between 0 and i,

asymptoting to a straight llne of small positive slope (0.084) for K 9

I. K 9 is defined as the ratio between the actual turbulent Reynolds

number and a 'critical' value determined numerically on the basis of

matching the available experimental data.

e. Turbulence trigEeringmodes

The discontinuous turbulence triggering mode is implemented using

the classic Reynolds number transition criterion for pipe flow as shown

by equation (5.23.5). In essence, this zeroes _(t) for all Reynolds

numbers less than the transition number, which is set at 2000. Note

that K 2 is maintained at unity, thus placing no additional restrictions

on the production of k while (N_)critica I is assigned a relatively

high value of 486, again, based on purely numerical considerations.

The continuous turbulence triggering mode is achieved by allowing

#(t) to exist regardless of the value of k as long as _ > 0 (equation

(5.23.5)). However, the foldback function control parameter is modified

slightly from its discontinuous form (equation (5.23)) and applied not

only to the _ production term in equation (5.21) but also to the k

production term in equation (5.20). Production of k and _ is thus

independent of the bulk flow Reynolds number (K 8 has a floor value of

unity in its continuous form). (N_)critica I is assigned a value based

on the criterion that k is equal to the square of the friction velocity

under laminar flow conditions. Physically, this implies a 'continuous'

model of fluid turbulence in which all flows contain some level of

turbulence except that under laminar conditions, such turbulence is

small, stable or 'ordered' and does not increase in the presence of

imposed stimuli. Atmospheric flows, for example, are often considered

in this light.

Thus, in summary, the k-_ model is implemented as defined by equations

(5.20) to (5.24) at the chosen experimental test point. In view of the

foldback function methodology employed, the empirical nature of its

constituent parameters, the uncertainty as to which triggering mode is

physically accurate and the basic reservations expressed about the advectlon

triggering methodology, this version of the k-_ model should be viewed as

entirely experimental and subject to even drastic revision.

5.7 COMPARISON CASE EXPERIMENTAL DATA

The experimental data made available for the comparison case simulation

application consists of a half cycle of axial ensemble-averaged mean
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_elocities and root-mean-square (RMS)velocity fluctuations at 12 locations on
one radial plane. The flow during the half cycle is in the negative
direction, that is, from the open end toward the cylinder. The parameters
defining the experimental data are listed in table 5.6.

Table 5.6 Parameters for the comparison case experimental data.

Engine speed: 33.75 rpm
Probe position: 1676.4 mmfrom the cylinder end
Dry bulb temperature: 25.5°C
Wet bulb temperature: 15.80C
Ambient pressure: 981 bar
No. of cycles for ensemble averaging: 500
No, of probe radial locations; 12

Since 500 cycles are used for computing the ensemble averages, in this
respect, the data are felt to be adequate for validation purposes. The probe
position is located toward the open end of the METR,so enhancing the yield of
the comparison and validation process because any experimental flow
asymmetries would stress the simulation to a greater extent. Unfortunately,
since only negative half-cycle data are available, this aspect of the
comparison cannot be accomplished.

Unlike the base case data, no bulk meanvelocities were provided for
simulation calibration purposes. Hencethese velocities are computed from the
meanvelocities provided using an area-weighted aggregation procedure. The
resulting bulk velocity comparisons for the discontinuous and continuous
triggering modes(henceforth referred to as the DTMand CTMsimulations,
respectively) are shownin figures 5.43 and 5.44. The simulated velocity
profiles are identical showing that the triggering modehas no influence on
the bulk velocities, as expected from a conservative set of transport
equations. The experimental data reveal a small phase shift relative to the
simulated data which is apparent at 0° and 180° . However, of major concern are
the large amplitude, higher order harmonic fluctuations in the experimental
data between 60° and 120°. Apparently, these fluctuations are related to
piston/cylinder stiction and/or sealing effects. Nevertheless, their
magnitude and shape has a major impact on the behavior of the flow turbulence,
so complicating the comparison of the experimental and simulated k between 60 °

and 120 ° because the simulated k is not subject to the same production stimuli

as the experimental k. Clearly, these fluctuations in the mean experimental

data should be removed before any further comparison or Validation work is

undertaken.

5.8 COMPARISON CASE RESULTS

An overview of the cyclic energy balances for the DTM and CTM simulation

runs is shown in table 5.7.
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Table 5.7 Comparison case cyclic energy balances.

Triggering mode

discontinuous

continuous

Net Heat Net Heat Net Kinetic Indicated Energy

Input Output Energy Con- Work Done Balance

(J) (J) version (J) (J) Error (%)

0.2482 0.7023 0.2847 -0.1693 0.01016

0.223 0.4347 0.0578 o0.1538 0.015098

The energy balance errors reported were realised after three simulated cycles.

Of significance is that the net kinetic energy conversion for the DTM

simulation is four times greater than that of the CTM simulation. This is

attributable to the turbulence magnitude being larger in the DTM simulation

(see figures 5.55 and 5.56).

The mean velocity profiles at the test section are compared in figures

5.45 to 5.47. The fluctuations apparent in figures 5.43 and 5.44 are also

evident in figure 5.45 and are manifest through the boundary layer. The

magnitude of the 12.5% discrepancy in the simulated and experimental maximum

mean velocities is mainly attributable to the fluctuations in the experimental

mean velocities. Although figures 5.46 and 5.47 are similar, the DTM

simulation appears to correspond more closely to the experimental data over

the first quarter of the cycle than the CTM simulation. This is confirmed by

figures 5.48 and 5.49, particularly below 50 ° . As noted above, because the

difference in core velocities is largely due tQ systematic experimental

effects which are not included in the simulation, the impact of turbulence

model errors on the mean velocity profiles cannot be readily determined.

Hence, ignoring the magnitude discrepancies, figure 5.5'0 shows that the CTM

simulation yields velocity profiles that parallel their experimental

counterparts fairly well in the core flow region. However, the simulated

velocity profiles in the boundary layer do not agree well with the

experimental data beyond 116.5 ° . Returning to figures 5.48 and 5.49, the DTM

simulation seems to yield a closer correspondence to the experimental data in

the boundary layer than the CTM simulation. Comparing figures 5.48 _o 5.50

with figure 5.35 (showing data produced without a turbulence model), it is

evident that inclusion of a turbulence model does yield significantly better

correspondence between the simulated and experimental data in the core flow

region.

The discrepancies between the experimental and simulated boundary layer

mean velocity profiles most likely are attributable_to the turbulence

triggering mechanism used in the simulation. The experimental axial RMS

velocity fluctuations are shown in figure 5.51. These fluctuations are

converted into turbulent kinetic energy (k) in figure 5.52. Strictly, this k

cannot be compared with that simulated because the simulated k includes both

axial and radial components while the measured k consists of an axial

component only. The k-_ and k-_ models assume that k is isotropic (that is,

the axial and radial components are equal) which may not be true in

oscillating flows. However, without experimental radial velocity fluctuation

data, no further determination on this issue can be made here.
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With this reservation, the experimental and simulated turbulent kinetic

energies are compared in figures 5.52 to D.54. The effects of the

experimental mean velocity fluctuations on the turbulent kinetic energy is

readily apparent in figure 5.52, which thus does not display the same

smoothness as figures 5.53 and 5.54. The overall shape of the DTM simulation

k surface corresponds better to the experimental data than that of the CTM

simulation (figure 5.54). However, the DTM simulation turbulence triggering

occurs too early compared with the experimental observations, that is, the

discontinuous triggering level (based on bulk flow considerations) of NRe -

2000 is too low. It may thus be inferred that discontinuous triggering is

physically more accurate but that a bulk flow parameter such as the Reynolds

number is inadequate as a trigger parameter. As suggested in section

5.6.3(c), use of a microscopically based trigger parameter may prove to be

physically more realistic.

The CTM simulation depicts the existence of relatively large k over the

entire half cycle (figure 5.54) and thus does not correspond to the physical

behavior depicted in figure 5.52. In contrast, the DTM simulation yields a

maximum k 3.8 times greater than that measured while the CTM simulation and

measured k are within 20% of each other. Assuming that the isotroplc

turbulence assumption is valid for the experimental flow, then a net maximum

experimental k of .811 (m/s) 2 falls one-thlrd of the way between the CTM and

DTM simulated values. This warrants a suspicion that the CTM simulation is

more accurate in predicting the evolution of turbulence once it has been

triggered while the DTM simulation better reflects the triggering mechanism

itself. Lastly, the differences in turbulence triggering revealed in figures

5.52 to 5.54 can be seen to account for the discrepancy in the mean velocity

profiles evident in figures 5.48 to 5.50.

The full-cycle DTM and CTM simulations produce radically different

_ surfaces as shown in figures 5.55 and 5.56. As there is no experimental data

against which the simulated full-cycle k data may be directly compared,

qualitative recourse again must be made to figure 5.38, which is the closest

data point in Seume's thesis to the comparison case test point. Based on a

comparison of figures 5.38, 5.55 and 5.56, it is apparent that, topologically,

the DTM simulation produces far better correspondence with the experimental

data than the CTM simulation. Examination of figure 5.55 reveals that the

magnitude of the negative half-cycle turbulence (0 ° to 180 °) is slightly less

than the positive half-cycle turbulence, thus mimicking the trend of figure

5.38. However, the simulated relative positive and negative half-cycle

kinetic energies are probably in error. Figure 5.56 bears little resemblance

to figure 5.38 revealing inverted behavior, that is, negative half-cycle k

greater than the positive half-cycle k. Based on this comparison, it must be

concluded that continuous triggering does not appear to be physically viable,

at least for the two-parameter, k-_ model evaluated.
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5.9 CONCLUSION

In the context of the limited experimental data available, the results

show that a two-parameter, k-_ foldback function turbulence model

incorporating a discontinuous triggering mode is capable of producing

qualitatively reasonable turbulence predictions. In terms of the mean flow

parameter predictions, which are important to Stirling machine design and

analysis, two-parameter turbulence models of the k-_ type may be adequate for

most purposes, so making use of a more sophisticated (although rigorously

preferable) Reynolds stress turbulence model unnecessary.

Viewing the simulation and testing of the METR as a whole, it seems that

the advective turbulence triggering hypothesis of Seume is the predominant

triggering mechanism, while the local acceleration has more influence on

controlling the evolution of the turbulence once triggering has occurred.

This triggering mechanism is fundamentally discontinuous, requiring the

development of a turbulence triggering parameter which is fully realizable in

terms of the turbulence model variables. The bulk flow Reynolds number does

not appear to be suitable because it is macroscopically rather than

microscopically defined. The experimental and simulated data both suggest

that a microscopically based triggering parameter is required for physical

accuracy.

The turbulence model development and testing reported should be viewed

only as an exploratory first step that has highlighted the turbulence

triggering issue as being cardinal to the successful simulation of oscillating

turbulent flows. More experimental data and simulation development is

necessary before the k-_ turbulence model presented is suitable for

application to the oscillating flows found in Stirling cycle machines.
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CHAPTER 6

CONCLUSION

Three of the issues that have emerged during the course of this project

as being of significance to Stirling machine simulation are:

. Two-dimensional component simulation of Stirling machines does not

necessarily yield any improvement over one-dimensional simulation

in overall performance prediction.

. The ability to model information propagation effects at low Mach

numbers may be a necessary attribute for Stirllng machine

simulation codes. This determination may be made in terms of the

characteristic number (Nch) which appears to be a useful

additional non-dimensional parameter for describing Stirling

machine oscillating flows.

. Turbulence triggering is a key element in implementing a

successful turbulence model for oscillating flows.

While simulating the METR turbulent flow field, the need for reliable

oscillating turbulent flow experimental data spanning a broad range of

boundary conditions has become apparent. As advective boundary conditions

have a major, if not overriding, significance on the turbulence triggering

mechanism in oscillating flows, particular care should be taken to quantify

these boundary conditions completely. However, it must be recognised that

turbulence models validated using experimental data generated with non-

Stirling advective boundary conditions may not be immutably applicable to

Stirling machines themselves because of the inherently chaotic nature of the

triggering process. Thus, ultimately, such turbulence models may have to be

validated against turbulent flow data gathered in Stirling machines directly.

Although two-dimensional component simulation is clearly of value in

understanding the flow details of Stirling machines, from the work carried out

here, it is not yet evident that such component simulation provides any better

prediction of overall machine performance than one-dimensional simulation.

From a design perspective, two-dimensional component simulation thus may serve

best as a means of generating improved turbulence correlations for use in

existing one-dimensional codes. Nevertheless, the continuing evolution of

computer hardware will eventually make end-to-end, two-dimensional simulation

of Stirling machines a cost-effective reality.

Use of qualifying benchmark tests for Stirling machine simulation codes

may prove to be an effective means of ensuring that these codes meet a minimum

standard of validity, particularly if they are used to design novel (and

expensive) Stirling hardware. Iberall's (Ib50) experimentally validated
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(Wa65, Go68) analytic solution of the transmission line problem is an ideal

candidate for a qualifying benchmark test.

As a general proposition, numerical methods are an important facet of

Stirling machine simulation to the extent that the numerical method itself

emulates a physical process. Thus, simulation errors may be a result of the

physical implications of a particular numerical method, rather than just its

numerical accuracy implications. In this light, an isolated investigation of

pressure-linking as a legitimate numerical algorithm for simulating low

characteristic number compressible flows is warranted.
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simulations. The heater was treated as a 1- or 2-D entity in an otherwise I-D system. 2-D flow effects impacted

the transient flow predictions in the heater itself but did not have a major impact on overall system performance.

Information propagation effects may be a significant issue in the simulation (if not the performance) of high-

frequency, high-pressure Stirling machines. This was investigated further by comparing a simulation against an
experimentally validated analytic solution for the fluid dynamics of a transmission line. The applicability of the

pressure-linking algorithm for compressible flows may be limited by characteristic number (defined as flow path

information traverses per cycle); this warrants further study. Lastly the METR was simulated in l- and 2-D. A

two-parameter k-o_ foldback function turbulence model was developed and tested against a limited set of METR

experimental data.
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